On Representer Theorems and Convex Regularization - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

On Representer Theorems and Convex Regularization

Résumé

We establish a general principle which states that regularizing an inverse problem with a convex function yields solutions which are convex combinations of a small number of atoms. These atoms are identified with the extreme points and elements of the extreme rays of the regularizer level sets. An extension to a broader class of quasi-convex regularizers is also discussed. As a side result, we characterize the minimizers of the total gradient variation, which was still an unresolved problem.
Fichier principal
Vignette du fichier
BCDDGW_18.pdf (338.19 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01823135 , version 1 (25-06-2018)
hal-01823135 , version 2 (16-07-2018)
hal-01823135 , version 3 (26-11-2018)

Identifiants

Citer

Claire Boyer, Antonin Chambolle, Yohann de Castro, Vincent Duval, Frédéric de Gournay, et al.. On Representer Theorems and Convex Regularization. 2018. ⟨hal-01823135v2⟩
1151 Consultations
915 Téléchargements

Altmetric

Partager

More