Second order stochastic target problems with generalized market impact
Résumé
We extend the study of [7, 18] to stochastic target problems with general market impacts. Namely, we consider a general abstract model which can be associated to a fully nonlinear parabolic equation. Unlike [7, 18], the equation is not concave and the regularization/verification approach of [7] can not be applied. We also relax the gamma constraint of [7]. In place, we need to generalize the a priori estimates of [18] and exhibit smooth solutions from the classical parabolic equations theory. Up to an additional approximating argument, this allows us to show that the super-hedging price solves the parabolic equation and that a perfect hedging strategy can be constructed when the coefficients are smooth enough. This representation leads to a general dual formulation. We finally provide an asymptotic expansion around a model without impact.
Domaines
Probabilités [math.PR]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...