Numerical analysis of a water wave model with a nonlocal viscous dispersive term using the diffusive approach - Archive ouverte HAL
Article Dans Une Revue Mathematical Methods in the Applied Sciences Année : 2018

Numerical analysis of a water wave model with a nonlocal viscous dispersive term using the diffusive approach

Résumé

In this paper, we numerically study the water wave model with a nonlocal viscous term $$u_t+u_x+\beta u_{xxx}+\sqrt{\nu}D^{1/2}u+\gamma u u_x=\alpha u_{xx}$$ where $$ D^{1/2}u(t)=\frac{1}{\sqrt{\pi}}\frac{\partial}{\partial t}\int_0^t \frac{u(s)}{\sqrt{t-s}}\mathrm{d}s $$ is the Riemann-Liouville half-order derivative in time. We propose and compare different numerical schemes based on the diffusive realizations of fractional operators.
Fichier principal
Vignette du fichier
Dumont2018.pdf (323.94 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-01818120 , version 1 (17-03-2023)

Licence

Identifiants

Citer

Serge Dumont, Imen Manoubi. Numerical analysis of a water wave model with a nonlocal viscous dispersive term using the diffusive approach. Mathematical Methods in the Applied Sciences, 2018, 41 (12), pp.4810-4826. ⟨10.1002/mma.4932⟩. ⟨hal-01818120⟩
82 Consultations
34 Téléchargements

Altmetric

Partager

More