Mass Diffusion and Thermal Diffusivity of the Decane-pentane Mixture Under High Pressure as a Ground-based Study for SCCO Project - Archive ouverte HAL
Journal Articles Microgravity Science and Technology Year : 2016

Mass Diffusion and Thermal Diffusivity of the Decane-pentane Mixture Under High Pressure as a Ground-based Study for SCCO Project

Abstract

Thermodiffusion experiments on isomassic binary mixture of decane and pentane in the liquid phase have been performed between 25 ∘C and 50 ∘C and for pressures from 1MPa until 20MPa. By dynamic analysis of the light scattered by concentration non-equilibrium fluctuations in the binary mixture we obtained the mass diffusion coefficients of the mixture at each temperature and pressure. For the first time we were able to apply similar analysis to thermal fluctuations thus getting a simultaneous measurement of the thermal diffusivity coefficient. While mass diffusion coefficients decrease linearly with the pressure, thermal diffusivity coefficients increase linearly. In principle the proposed method can be used also for measuring the Soret coefficients at the same time. However, for the present mixture the intensity of the optical signal is limited by the optical contrast factor. This affects our capability of providing a reliable estimate of the Soret coefficient by means of dynamic Shadowgraph. Therefore the mass diffusion coefficients measurements would need to be combined with independent measurements of the thermodiffusion coefficients, e.g. thermogravitational column, to provide Soret coefficients. The obtained values constitute the on-ground reference measurements for one of the mixture studied in the frame of the project SCCO-SJ10, which aims to measure the Soret coefficients of multicomponents mixtures under reservoir conditions. Microgravity experiments will be performed on the Chinese satellite SJ10 launched in April 2016. © 2016, Springer Science+Business Media Dordrecht.
Fichier principal
Vignette du fichier
MST_SCCO_vf.pdf (1.2 Mo) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01815883 , version 1 (06-02-2020)

Identifiers

Cite

I. Lizarraga, C. Giraudet, Fabrizio Croccolo, M.M. Bou-Ali, Henri Bataller. Mass Diffusion and Thermal Diffusivity of the Decane-pentane Mixture Under High Pressure as a Ground-based Study for SCCO Project. Microgravity Science and Technology, 2016, 28 (5), pp.545-552. ⟨10.1007/s12217-016-9506-9⟩. ⟨hal-01815883⟩
28 View
269 Download

Altmetric

Share

More