Study of Error Propagation in the Transformations of Dynamic Thermal Models of Buildings - Archive ouverte HAL
Article Dans Une Revue Journal of Control Science and Engineering Année : 2017

Study of Error Propagation in the Transformations of Dynamic Thermal Models of Buildings

Etude de la propagation de l'erreure dans les transformations des modèles thermiques des bâtiments

Loic Raillon
  • Fonction : Auteur
  • PersonId : 1033156
Christian Ghiaus

Résumé

Dynamic behaviour of a system may be described by models with different forms: thermal (RC) networks, state-space representations, transfer functions, and ARX models. These models, which describe the same process, are used in the design, simulation, optimal predictive control, parameter identification, fault detection and diagnosis, and so on. Since more forms are available, it is interesting to know which one is the most suitable by estimating the sensitivity of the model to transform into a physical model, which is represented by a thermal network. A procedure for the study of error by Monte Carlo simulation and of factor prioritization is exemplified on a simple, but representative, thermal model of a building. The analysis of the propagation of errors and of the influence of the errors on the parameter estimation shows that the transformation from state-space representation to transfer function is more robust than the other way around. Therefore, if only one model is chosen, the state-space representation is preferable.
Fichier principal
Vignette du fichier
35_Study_of_error_propagation_in_the_transformations.pdf (2.34 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01815746 , version 1 (14-06-2018)

Identifiants

Citer

Loic Raillon, Christian Ghiaus. Study of Error Propagation in the Transformations of Dynamic Thermal Models of Buildings. Journal of Control Science and Engineering, 2017, 2017, pp.5636145. ⟨10.1155/2017/5636145⟩. ⟨hal-01815746⟩
57 Consultations
54 Téléchargements

Altmetric

Partager

More