Regularity results for the solutions of a non-local model of traffic - Archive ouverte HAL
Article Dans Une Revue Discrete and Continuous Dynamical Systems - Series A Année : 2019

Regularity results for the solutions of a non-local model of traffic

Résumé

We consider a non-local traffic model involving a convolution product. Unlike other studies, the considered kernel is discontinuous on R. We prove Sobolev estimates and prove the convergence of approximate solutions solving a viscous and regularized non-local equation. It leads to weak, $C([0,T],L^2(\R))$, and smooth, $W^{2,2N}([0,T]\times\R)$, solutions for the non-local traffic model.
Fichier principal
Vignette du fichier
BerthelinGoatin.pdf (317.56 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01813760 , version 1 (12-06-2018)

Identifiants

  • HAL Id : hal-01813760 , version 1

Citer

Florent Berthelin, Paola Goatin. Regularity results for the solutions of a non-local model of traffic. Discrete and Continuous Dynamical Systems - Series A, 2019, 39 (6), pp.3197-3213. ⟨hal-01813760⟩
255 Consultations
160 Téléchargements

Partager

More