Memory Bandits: a Bayesian approach for the Switching Bandit Problem
Résumé
The Thompson Sampling exhibits excellent results in practice and it has been shown to be asymptotically optimal. The extension of Thompson Sampling algorithm to the Switching Multi-Armed Bandit problem, proposed in [13], is a Thompson Sampling equiped with a Bayesian online change point detector [1]. In this paper, we propose another extension of this approach based on a Bayesian aggregation framework. Experiments provide some evidences that in practice, the proposed algorithm compares favorably with the previous version of Thompson Sampling for the Switching Multi-Armed Bandit Problem, while it outperforms clearly other algorithms of the state-of-the-art.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...