Absence of Dobrushin states for $2d$ long-range Ising models - Archive ouverte HAL
Article Dans Une Revue Journal of Statistical Physics Année : 2018

Absence of Dobrushin states for $2d$ long-range Ising models

Résumé

We consider the two-dimensional Ising model with long-range pair interactions of the form $J_{xy}\sim|x-y|^{-\alpha}$ with $\alpha>2$, mostly when $J_{xy} \geq 0$. We show that Dobrushin states (i.e. extremal non-translation-invariant Gibbs states selected by mixed $\pm$-boundary conditions) do not exist. We discuss possible extensions of this result in the direction of the Aizenman-Higuchi theorem, or concerning fluctuations of interfaces. We also mention the existence of rigid interfaces in two long-range anisotropic contexts.

Dates et versions

hal-01810117 , version 1 (07-06-2018)

Identifiants

Citer

Loren Coquille, Aernout C. D. van Enter, Arnaud Le Ny, Wioletta M. Ruszel. Absence of Dobrushin states for $2d$ long-range Ising models. Journal of Statistical Physics, 2018, ⟨10.1007/s10955-018-2097-7⟩. ⟨hal-01810117⟩
49 Consultations
0 Téléchargements

Altmetric

Partager

More