A Non-Convex Variational Approach to Photometric Stereo under Inaccurate Lighting - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

A Non-Convex Variational Approach to Photometric Stereo under Inaccurate Lighting

Résumé

This paper tackles the photometric stereo problem in the presence of inaccurate lighting, obtained either by calibration or by an uncalibrated photometric stereo method. Based on a precise modeling of noise and outliers, a robust variational approach is introduced. It explicitly accounts for self-shadows, and enforces robustness to cast-shadows and specularities by resorting to redescending M-estimators. The resulting non-convex model is solved by means of a computationally efficient alternating reweighted least-squares algorithm. Since it implicitly enforces integrability, the new variational approach can refine both the intensities and the directions of the lighting.
Fichier principal
Vignette du fichier
queau_18994.pdf (1.27 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01809278 , version 1 (06-06-2018)

Identifiants

Citer

Yvain Quéau, Tao Wu, Jean-Denis Durou, François Lauze, Daniel Cremers. A Non-Convex Variational Approach to Photometric Stereo under Inaccurate Lighting. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul 2017, Honolulu, United States. pp. 99-108, ⟨10.1109/CVPR.2017.45⟩. ⟨hal-01809278⟩
101 Consultations
133 Téléchargements

Altmetric

Partager

More