Plasmon spectroscopy of small indium-silver clusters: Monitoring the indium shell oxidation
Résumé
Owing to the very different electrovalences of indium and silver, nanoparticles made of these elements are among the simplest examples of hybrid plasmonic systems retaining a full metallic character. The optical properties of small indium-silver clusters are investigated here for the first time in relation to their structural characterization. They are produced in the gas phase by a laser vaporization source and co-deposited in a silica matrix. The optical absorption of fresh samples is dominated by a strong surface plasmon resonance (SPR) in the near UV, in an intermediate position between those of pure elements. A combination of SPR analysis and electron microscopy imaging provides evidence for the favourable surface segregation of indium. After a prolonged exposure to ambient air and because of the silica matrix porosity, changes in the SPR reflect the spontaneous formation of a dielectric indium oxide shell around a metallic silver core. The metallic character of indium can nevertheless be recovered by annealing under a reducing atmosphere. The reversibility of these processes is directly mirrored in optical measurements through SPR shifts and broadenings as supported by multi-shell Mie theory calculations. By controlling their oxidation level, In-Ag clusters can be considered as new candidates to extend SPR spectroscopy in the UV range and model plasmonic systems consisting of a silver particle of potentially very small size, fully protected by a dielectric oxide shell. © 2014 the Owner Societies.