Hörmander functional calculus on UMD lattice valued Lp spaces under generalised Gaussian estimates - Archive ouverte HAL
Article Dans Une Revue Journal d'analyse mathématique Année : 2019

Hörmander functional calculus on UMD lattice valued Lp spaces under generalised Gaussian estimates

Résumé

We consider self-adjoint semigroups $T_t = exp(−tA)$ acting on $L^2(\Omega)$ and satisfying (generalised) Gaussian estimates, where $\Omega$ is a metric measure space of homogeneous type of dimension $d$. The aim of the article is to show that $A \otimes Id_Y$ admits a H\"ormander type $\mathcal{H}^\beta_2$ functional calculus on $L^p(\Omega; Y)$ where $Y$ is a UMD lattice, thus extending the well-known H\"ormander calculus of $A$ on $L^p(\Omega)$. We show that if $T_t$ is lattice positive (or merely admits an $H^\infty$ calculus on $L^p(\Omega; Y)$ then this is indeed the case. Here the derivation exponent has to satisfy $\beta > \alpha \cdot d + \frac12$, where $\alpha \in (0, 1)$ depends on $p$, and on convexity and concavity exponents of $Y$. A part of the proof is the new result that the Hardy-Littlewood maximal operator is bounded on $L^p(\Omega; Y)$. Moreover, our spectral multipliers satisfy square function estimates in $L^p(\Omega; Y)$. In a variant, we show that if $e^{itA}$ satisfies a dispersive $L^1(\Omega) \to L^\infty(\Omega)$ estimate, then $\beta > d + \frac12$ above is admissible independent of convexity and concavity of $Y$. Finally, we illustrate these results in a variety of examples.
Fichier principal
Vignette du fichier
Gaussian-UMD-revised Version Journal d Analyse mathematique.pdf (823.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01807058 , version 1 (04-06-2018)
hal-01807058 , version 2 (20-11-2019)

Identifiants

Citer

Luc Deleaval, Mikko Kemppainen, Christoph Kriegler. Hörmander functional calculus on UMD lattice valued Lp spaces under generalised Gaussian estimates. Journal d'analyse mathématique, In press. ⟨hal-01807058v2⟩
131 Consultations
141 Téléchargements

Altmetric

Partager

More