An observation-constrained multi-physics WRF ensemble for simulating European mega heat waves - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Geoscientific Model Development Année : 2015

An observation-constrained multi-physics WRF ensemble for simulating European mega heat waves

Résumé

Many climate models have difficulties in properly reproducing climate extremes, such as heat wave conditions. Here we use the Weather Research and Forecasting (WRF) regional climate model with a large combination of different atmospheric physics schemes, in combination with the NOAH land-surface scheme, with the goal of detecting the most sensitive physics and identifying those that appear most suitable for simulating the heat wave events of 2003 in western Europe and 2010 in Russia. In total, 55 out of 216 simulations combining different atmospheric physical schemes have a temperature bias smaller than 1 • C during the heat wave episodes, the majority of simulations showing a cold bias of on average 2-3 • C. Conversely, precipitation is mostly overestimated prior to heat waves, and shortwave radiation is slightly overestimated. Convection is found to be the most sensitive atmospheric physical process impacting simulated heat wave temperature across four different con-vection schemes in the simulation ensemble. Based on these comparisons, we design a reduced ensemble of five well performing and diverse scheme configurations, which may be used in the future to perform heat wave analysis and to investigate the impact of climate change during summer in Eu-rope.
Fichier principal
Vignette du fichier
gmd-8-2285-2015.pdf (1.82 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01806132 , version 1 (31-08-2020)

Identifiants

Citer

A. Stegehuis, R. Vautard, Philippe Ciais, A. Teuling, D. Miralles, et al.. An observation-constrained multi-physics WRF ensemble for simulating European mega heat waves. Geoscientific Model Development, 2015, 8 (7), pp.2285 - 2298. ⟨10.5194/gmd-8-2285-2015⟩. ⟨hal-01806132⟩
35 Consultations
33 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More