Three-terminal tandem solar cells combining bottom interdigitated back contact and top heterojunction subcells: a new architecture for high power conversion efficiency
Résumé
We present the design of a new architecture of three-terminal photovoltaic tandem solar cells. It combines an interdigitated back contacted bottom lateral subcell with a heterojunction vertical top cell. In this concept, the two subcells can work independently and there is no need for tunnel junctions. It is particularly well suited to silicon back contact subcells and to various types of top cell materials from III-V compounds or perovskites. The working principle is detailed here using as an example a p-i III-V front stack onto n-type silicon bottom cell. We perform 2D modeling using realistic material input parameters and show how interface bandgap engineering can improve the tandem cell efficiency up to a realistic 35% value. The proposed cell concept named BESTT (Bandgap Engineered Smart Silicon Three-Terminal) cell can be realized with less technological steps and at a lower cost compared to the conventional four-terminal process. REMARKS: We chose TOPIC 1.2 because we present here a new concept for photovoltaic cell. The work of this submission concerns a new three-terminal architecture of tandem cell on silicon.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...