Behaviour of Light Induced Defect Generation and Carrier Lifetime Degradation in Solar Grade Silicon
Résumé
Light-induced defect generation seriously reduces the minority-carrier lifetime of crystalline silicon (c-Si) wafers which causes a decrease in solar cell efficiency. In this paper we investigate the impact of boron-oxygen complexes and iron impurities on the light induced minority-carrier lifetime degradation in c-Si, comparing electronic grade and upgraded metallurgical grade materials. For the latter, the characteristic of the decay process is shown to be composed of a fast initial decay and a subsequent slow asymptotic decay. We conclude that the dissociation of iron-boron pairs must be taken into account to explain the light-induced lifetime reduction.