Logarithmic mathematical morphology: a new framework adaptive to illumination changes - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Logarithmic mathematical morphology: a new framework adaptive to illumination changes

Résumé

A new set of mathematical morphology (MM) operators adaptive to illumination changes caused by variation of exposure time or light intensity is defined thanks to the Logarithmic Image Processing (LIP) model. This model based on the physics of acquisition is consistent with human vision. The fundamental operators, the logarithmic-dilation and the logarithmic-erosion, are defined with the LIP-addition of a structuring function. The combination of these two adjunct operators gives morphological filters, namely the logarithmic-opening and closing, useful for pattern recognition. The mathematical relation existing between ``classical'' dilation and erosion and their logarithmic-versions is established facilitating their implementation. Results on simulated and real images show that logarithmic-MM is more efficient on low-contrasted information than ``classical'' MM.
Fichier principal
Vignette du fichier
2018_Noyel_CIARP.pdf (2.11 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01789693 , version 1 (11-05-2018)
hal-01789693 , version 2 (23-11-2018)
hal-01789693 , version 3 (18-03-2019)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Guillaume Noyel. Logarithmic mathematical morphology: a new framework adaptive to illumination changes. 23rd Iberoamerican Congress on Pattern Recognition (CIARP 2018), Nov 2018, Madrid, Spain. pp.453-461, ⟨10.1007/978-3-030-13469-3_53⟩. ⟨hal-01789693v3⟩

Collections

IPRI TDS-MACS
384 Consultations
134 Téléchargements

Altmetric

Partager

More