Deep learning for dehazing: Benchmark and analysis - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Deep learning for dehazing: Benchmark and analysis

Résumé

We compare a recent dehazing method based on deep learning , Dehazenet, with traditional state-of-the-art approach, on benchmark data with reference. Dehazenet estimates the depth map from a single color image, which is used to inverse the Koschmieder model of imaging in the presence of haze. In this sense, the solution is still attached to the Koschmieder model. We demonstrate that this method exhibits the same limitation than other inversions of this imaging model.
Fichier principal
Vignette du fichier
2018NOBIM.pdf (93.25 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01786653 , version 1 (06-05-2018)

Identifiants

  • HAL Id : hal-01786653 , version 1

Citer

Leonel Cuevas Valeriano, Jean-Baptiste Thomas, A Benoit. Deep learning for dehazing: Benchmark and analysis. NOBIM 2018, Mar 2018, Hafjell, Øyer, Norway. ⟨hal-01786653⟩
190 Consultations
153 Téléchargements

Partager

More