The geometry of the flex locus of a hypersurface - Archive ouverte HAL
Article Dans Une Revue Pacific Journal of Mathematics Année : 2020

The geometry of the flex locus of a hypersurface

La géometrie du lieu flex d'une hypersurface

Résumé

We give a formula in terms of multidimensional resultants for an equation for the flex locus of a projective hypersurface, generalizing a classical result of Salmon for surfaces in P3. Using this formula, we compute the dimension of this flex locus, and an upper bound for the degree of its defining equations. We also show that, when the hypersurface is generic, this bound is reached, and that the generic flex line is unique and has the expected order of contact with the hypersurface.
Fichier principal
Vignette du fichier
SalmonFlexes.pdf (479.01 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01779785 , version 1 (26-04-2018)

Identifiants

Citer

Laurent Busé, Carlos d'Andrea, Martín Sombra, Martin Weimann. The geometry of the flex locus of a hypersurface. Pacific Journal of Mathematics, 2020, 304 (2), pp.419--437. ⟨10.2140/pjm.2020.304.419⟩. ⟨hal-01779785⟩
477 Consultations
253 Téléchargements

Altmetric

Partager

More