The geometry of the flex locus of a hypersurface - Archive ouverte HAL
Journal Articles Pacific Journal of Mathematics Year : 2020

The geometry of the flex locus of a hypersurface

La géometrie du lieu flex d'une hypersurface

Abstract

We give a formula in terms of multidimensional resultants for an equation for the flex locus of a projective hypersurface, generalizing a classical result of Salmon for surfaces in P3. Using this formula, we compute the dimension of this flex locus, and an upper bound for the degree of its defining equations. We also show that, when the hypersurface is generic, this bound is reached, and that the generic flex line is unique and has the expected order of contact with the hypersurface.
Fichier principal
Vignette du fichier
SalmonFlexes.pdf (479.01 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01779785 , version 1 (26-04-2018)

Identifiers

Cite

Laurent Busé, Carlos d'Andrea, Martín Sombra, Martin Weimann. The geometry of the flex locus of a hypersurface. Pacific Journal of Mathematics, 2020, 304 (2), pp.419--437. ⟨10.2140/pjm.2020.304.419⟩. ⟨hal-01779785⟩
472 View
246 Download

Altmetric

Share

More