Unique continuation for many-body Schrödinger operators and the Hohenberg-Kohn theorem - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Unique continuation for many-body Schrödinger operators and the Hohenberg-Kohn theorem

Résumé

We prove the strong unique continuation property for many-body Schrödinger operators with an external potential and an interaction potential both in $L^p_{\rm{loc}}(\mathbb{R}^d)$, where p > 2 if d = 3 and p = max(2d/3, 2) otherwise, independently of the number of particles. With the same assumptions , we obtain the Hohenberg-Kohn theorem, which is one of the most fundamental results in Density Functional Theory.
Fichier principal
Vignette du fichier
ucp.pdf (166.98 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01770288 , version 1 (20-04-2018)
hal-01770288 , version 2 (21-05-2018)
hal-01770288 , version 3 (29-05-2018)
hal-01770288 , version 4 (01-03-2019)

Identifiants

Citer

Louis Garrigue. Unique continuation for many-body Schrödinger operators and the Hohenberg-Kohn theorem. 2018. ⟨hal-01770288v1⟩
494 Consultations
198 Téléchargements

Altmetric

Partager

More