SIALAC Benchmark: On the design of adaptive algorithms for traffic lights problems - Archive ouverte HAL
Poster De Conférence Année : 2018

SIALAC Benchmark: On the design of adaptive algorithms for traffic lights problems

Résumé

Optimizing traffic lights in road intersections is a mandatory step to achieve sustainable mobility and efficient public transportation in modern cities. Several mono or multi-objective optimization methods exist to find the best traffic signals settings, such as evolutionary algorithms, fuzzy logic algorithms, or even particle swarm optimizations. However, they are generally dedicated to very specific traffic configurations. In this paper, we introduce the SIALAC benchmark bringing together about 24 real-world based study cases, and investigate fitness landscapes structure of these problem instances.
Fichier principal
Vignette du fichier
sialac_gecco2018_short.pdf (522.32 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01767696 , version 1 (20-04-2018)

Identifiants

Citer

Florian Leprêtre, Cyril Fonlupt, Sébastien Verel, Virginie Marion. SIALAC Benchmark: On the design of adaptive algorithms for traffic lights problems. GECCO 2018, Jul 2018, Kyoto, Japan. ACM Digital Library, pp.288-289, 2018, ⟨10.1145/3205651.3205776⟩. ⟨hal-01767696⟩
150 Consultations
261 Téléchargements

Altmetric

Partager

More