Quenched convergence and strong local equilibrium for asymmetric zero-range process with site disorder - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Quenched convergence and strong local equilibrium for asymmetric zero-range process with site disorder

Résumé

We study asymmetric zero-range processes on Z with nearest-neighbour jumps and site disorder. The jump rate of particles is an arbitrary but bounded nondecreasing function of the number of particles. We prove quenched strong local equilibrium at subcritical and critical hydrodynamic densities, and dynamic local loss of mass at supercritical hydrodynamic densities. Our results do not assume starting from local Gibbs states. As byproducts of these results, we prove convergence of the process from given initial configurations with an asymptotic density of particles to the left of the origin. In particular , we relax the weak convexity assumption of [7, 8] for the escape of mass property. 1 MSC 2010 subject classification: 60K35, 82C22.
Fichier principal
Vignette du fichier
loceqzrp_110418_HAL.pdf (570.41 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01766873 , version 1 (14-04-2018)
hal-01766873 , version 2 (04-11-2019)

Identifiants

Citer

Christophe Bahadoran, T. Mountford, K. Ravishankar, E Saada. Quenched convergence and strong local equilibrium for asymmetric zero-range process with site disorder. 2018. ⟨hal-01766873v1⟩
126 Consultations
127 Téléchargements

Altmetric

Partager

More