Typed realizability for first-order classical analysis - Archive ouverte HAL
Article Dans Une Revue Logical Methods in Computer Science Année : 2015

Typed realizability for first-order classical analysis

Valentin Blot
  • Fonction : Auteur
  • PersonId : 1545
  • IdHAL : vblot

Résumé

We describe a realizability framework for classical first-order logic in which realizers live in (a model of) typed λµ-calculus. This allows a direct interpretation of classical proofs, avoiding the usual negative translation to intuitionistic logic. We prove that the usual terms of Gödel's system T realize the axioms of Peano arithmetic, and that under some assumptions on the computational model, the bar recursion operator realizes the axiom of dependent choice. We also perform a proper analysis of relativization, which allows for less technical proofs of adequacy. Extraction of algorithms from proofs of Π 0 2 formulas relies on a novel implementation of Friedman's trick exploiting the control possibilities of the language. This allows to have extracted programs with simpler types than in the case of negative translation followed by intuitionistic realizability.
Fichier principal
Vignette du fichier
1512.05313.pdf (475.78 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01766871 , version 1 (14-04-2018)

Identifiants

Citer

Valentin Blot. Typed realizability for first-order classical analysis. Logical Methods in Computer Science, 2015, 11 (4), pp.1 - 43. ⟨10.2168/LMCS-11(4:22)2015⟩. ⟨hal-01766871⟩
75 Consultations
72 Téléchargements

Altmetric

Partager

More