
HAL Id: hal-01766871
https://hal.science/hal-01766871v1

Submitted on 14 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Typed realizability for first-order classical analysis
Valentin Blot

To cite this version:
Valentin Blot. Typed realizability for first-order classical analysis. Logical Methods in Computer
Science, 2015, 11 (4), pp.1 - 43. �10.2168/LMCS-11(4:22)2015�. �hal-01766871�

https://hal.science/hal-01766871v1
https://hal.archives-ouvertes.fr

Logical Methods in Computer Science
Vol. 11(4:22)2015, pp. 1–43
www.lmcs-online.org

Submitted Apr. 15, 2015
Published Dec. 31, 2015

TYPED REALIZABILITY FOR FIRST-ORDER CLASSICAL ANALYSIS

VALENTIN BLOT

Department of Computer Science, University of Bath, United Kingdom
e-mail address: v.blot@bath.ac.uk

Abstract. We describe a realizability framework for classical first-order logic in which
realizers live in (a model of) typed λµ-calculus. This allows a direct interpretation of
classical proofs, avoiding the usual negative translation to intuitionistic logic. We prove
that the usual terms of Gödel’s system T realize the axioms of Peano arithmetic, and
that under some assumptions on the computational model, the bar recursion operator
realizes the axiom of dependent choice. We also perform a proper analysis of relativization,
which allows for less technical proofs of adequacy. Extraction of algorithms from proofs
of Π0

2 formulas relies on a novel implementation of Friedman’s trick exploiting the control
possibilities of the language. This allows to have extracted programs with simpler types
than in the case of negative translation followed by intuitionistic realizability.

Introduction

Realizability is a mean of formalizing the Brouwer-Heyting-Kolmogorov constructive inter-
pretation of logic. To each formula is associated a set of programs, its realizers, which contain
computational information about the formula. While the Curry-Howard isomorphism draws
a correspondence between proofs in a certain logical system and programs in a suitable typed
programming language, realizability takes a different approach and defines a realizer as a
program which behaves like a proof. First, this allows to give computational content to the
axioms of a theory, and second this allows to choose more freely the programming language,
independently from the logical system. It is even possible to consider untyped programming
languages, as was the case in the first realizability model from Kleene [Kle45], in which a real-
izer may be any recursive function. It is however still possible to consider a typed language,
as did Kreisel in his modified realizability model [Kre59]. Both models from Kleene and
Kreisel gave computational interpretation to Heyting arithmetic, the intuitionistic variant
of Peano arithmetic.

Gödel’s negative translation [Göd33] allowed for the first interpretations of classical
logic. Indeed, this translation from classical to intuitionistic logic, when followed by an
interpretation of intuitionistic proofs, gives a computational interpretation to classical logic.
This is what we call the indirect interpretation. This interpretation can easily be extended

2012 ACM CCS: [Theory of computation]: Logic—Constructive mathematics.
Key words and phrases: Classical realizability, Lambda-mu calculus, Bar-recursion, Axiom of choice.
Research supported by the UK EPSRC grant EP/K037633/1.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-11(4:22)2015

c© Valentin Blot
CC© Creative Commons

http://creativecommons.org/about/licenses

2 VALENTIN BLOT

to arithmetic, and therefore allows to get computational interpretations of Peano arithmetic
from the models of Kleene and Kreisel. Much later, Griffin discovered in [Gri90] that the
call/cc operator of the functional language Scheme could be typed with a classical princi-
ple: the law of Peirce. This opened the possibility to what we call a direct interpretation
of classical logic, using programming languages with control features. Following this path,
Parigot defined in [Par92] the λµ-calculus, a language for Gentzen’s classical sequent cal-
culus extending the Curry-Howard isomorphism to classical logic. Selinger axiomatized the
universal categorical model of λµ-calculus in [Sel01]. On another side, Krivine considered
untyped λ-calculus extended with the call/cc operator to give a realizability interpretation
to classical second-order Zermelo-Frænkel set theory [Kri01], later extended to handle the
axiom of dependent choice [Kri03, Kri09].

In this paper we define a realizability model for first-order classical logic which, contrary
to Krivine’s and similarly to Kreisel’s (but for classical logic), uses typed programs as realiz-
ers. We interpret our proofs in the language µPCF, which is a combination of the functional
Turing-complete language PCF with the control features of call-by-name λµ-calculus. As in
Krivine’s model, we associate to each formula a truth value and a falsity value which are
orthogonal to each other, but we perform a fine analysis of relativization and introduce pos-
itive predicates for which only the truth value is required and prove it to be correct through
a suitable restriction on the proofs in our logical system. We validate our model by proving
that the usual terms of Gödel’s system T realize the axioms of Peano arithmetic. We also
implement Friedman’s trick through the use of an external µ-variable rather than through
the replacement of the ⊥ formula by an existential statement, which allows for a simpler and
more effective interpretation. This variable is also used to define the orthogonality relation
between our truth and falsity values.

Interpreting the axiom of dependent choice in a classical setting is much more compli-
cated than interpreting arithmetic. Spector defined in [Spe62] the bar recursor and used
it in Gödel’s Dialectica interpretation [Göd58] (a computational interpretation similar to
realizability) to interpret the axiom of countable choice, and therefore the axiom schema of
specification. This operator was later studied in [Koh90], and a more uniform version was
used in [BBC98] to give an indirect realizability interpretation of countable choice. A version
with an implicit termination condition was later defined in [BO05] and used to interpret,
still in an indirect realizability setting, the double-negation shift principle and therefore the
axiom of dependent choice.

We prove here that under some assumptions on our model of µPCF, the bar recursion
operator of [BO05] realizes the axiom of dependent choice in our direct interpretation of
classical logic. Our implementation of Friedman’s trick then allows us to obtain an extrac-
tion result on Π0

2 formulas provable in classical analysis (Peano arithmetic + the axiom of
dependent choice).

1. Logic

We define in this section the logical system under which we will work through the article.
First, we define the general case of classical multisorted first-order logic (handling classical
reasoning by the use of multi-conclusioned sequents), then we describe the case of logics
with equality, the case of Peano arithmetic and its extension with the axiom of dependent
choice, and finally we recall some basic definitions about models of classical logic.

TYPED REALIZABILITY FOR FIRST-ORDER CLASSICAL ANALYSIS 3

1.1. Classical multisorted first-order logic. The logical framework we use is multisorted
first-order logic, where the sorts are fixed to be the types of simply typed λ-calculus (see
e.g. [TVD88]). We build from a set of base sorts ι the set of sorts:

σ, τ ::= ι | σ → τ

which are used for the individuals of the logic. We fix a set of sorted individual constants
(ranged over by cσ) from which we build the set of individuals of the logic:

tσ, uτ ::= cσ | xσ | (tσ→τuσ)τ

We also fix a set of sorted predicates (ranged over by P) from which we define the formulas
of the logic:

A,B ::= P (tσ1

1 , ..., t
σn
n) | ⊥ | A⇒B | A ∧B | ∀xσA

The set of sorts, individuals and formulas of the logic is parameterized by a signature:

Definition 1.1. A signature Σ is a set of base sorts together with a set of sorted constant
individuals and a set of sorted predicates.

Negation is defined as ¬A
∆
= A⇒⊥. We choose to have only negative connectives, since

the interpretation of our logic in categories of continuations defined in section 2.1.2 is based
on a negative call-by-name continuation-passing-style translation. The positive connectives

are defined from the negative ones: A ∨ B
∆
= ¬ (¬A ∧ ¬B) and ∃xσA

∆
= ¬∀xσ¬A. It is

well-known that with this coding of positive connectives with negative ones, a formula A is
provable in our system if and only if the formula obtained by replacing every P (t1, ..., tn)
with ¬¬P (t1, ..., tn) in A is provable in its intuitionistic restriction. In section 3.1 we will
also introduce the notion of negative basic predicates, which are those for which ¬¬P⇒P is
valid under the realizability interpretation. We perform a more detailed comparison between
our system and the usual ones in section 1.3.1.

Since one of the goals of realizability is to provide a computational interpretation of
theories beyond pure first-order logic, our model is dependent upon the particular set of
axioms under consideration:

Definition 1.2. A theory on a given signature Σ is a set Ax of closed formulas (axioms)
written in the language defined by Σ.

We work in a variant of natural deduction in sequent style, so the interpretation of
classical proofs in λµ-calculus is as direct as possible. In this setting, a context Γ or ∆ is a
finite unordered sequence of formulas and a sequent is of the form:

Γ ⊢ A | ∆

The formula A on the right is the formula that is being worked on, and this presentation
is again chosen to have an easy interpretation in λµ-calculus. The above sequent should be
interpreted as: the conjunction of the formulas of Γ implies the disjunction of A and of the
formulas of ∆. If ∆ is empty we simply write Γ ⊢ A. The set of derivable sequents of a given
theory is defined from Ax using the rules of Figure 1. In this system one can for example
derive in any theory the ex-falso principle, the double-negation elimination and Peirce’s law:

⊢ ⊥⇒A ⊢ ¬ (¬A)⇒A ⊢ ((A⇒B)⇒A)⇒A

The weakening rule:
Γ ⊢ A | ∆

Γ⊆Γ′,∆⊆∆′

Γ′ ⊢ A | ∆′

4 VALENTIN BLOT

Γ, A ⊢ A | ∆
(A∈Ax)

Γ ⊢ A | ∆
Γ ⊢ A | A,∆

Γ ⊢ ⊥ | A,∆

Γ ⊢ ⊥ | A,∆

Γ ⊢ A | ∆

Γ, A ⊢ B | ∆

Γ ⊢ A⇒B | ∆

Γ ⊢ A⇒B | ∆ Γ ⊢ A | ∆

Γ ⊢ B | ∆

Γ ⊢ A | ∆ Γ ⊢ B | ∆

Γ ⊢ A ∧B | ∆

Γ ⊢ A1 ∧A2 | ∆

Γ ⊢ Ai | ∆

Γ ⊢ A | ∆
(xσ /∈FV(Γ,∆))

Γ ⊢ ∀xσA | ∆

Γ ⊢ ∀xσA | ∆

Γ ⊢ A {tσ/xσ} | ∆

Figure 1: Deduction rules for first-order multisorted logic

is admissible (α-conversion may be necessary to preserve side condition of ∀-intro) and we
use it without mentioning it. The left contraction rule is derivable and the right one is
admissible:

Γ, A,A ⊢ B | ∆

Γ, A ⊢ A⇒ B | ∆ Γ, A ⊢ A | ∆

Γ, A ⊢ B | ∆

Γ ⊢ A | B,B,∆
B,B,∆⊆A,B,B,∆

Γ ⊢ A | A,B,B,∆

Γ ⊢ ⊥ | A,B,B,∆

Γ ⊢ B | A,B,∆

Γ ⊢ ⊥ | A,B,∆

Γ ⊢ A | B,∆

so we also use them implicitly. If a sequent ⊢ A is derivable in a theory Ax, then since Ax
may contain infinitely many formulas we write to avoid confusion:

Ax |∼ A

1.2. Equational theories. Most of the theories used in mathematics involve equality, but
there are several notions for it. Here we use a primitive Leibniz equality at each type. In
fact, as in [Kri09], we use a primitive inequality rather than an equality, which allows us
to realize the Leibniz scheme. Moreover, since we are in classical logic, the set of provable
sequents is unchanged. In the intuitionistic case however, things are less clear and we discuss
it in section 1.3.1.

We say that a theory is an equational theory if it contains for each sort σ an inequality
predicate 6=σ between terms of sort σ (for which we use infix notation), and the following
axioms for reflexivity and the Leibniz scheme at all sorts:

(refl) ∀xσ (x =σ x) (Leib) ∀~z~τ ∀xσ ∀yσ (¬A⇒A {y/x} ⇒ x 6=σ y)

where t = u
∆
= ¬ (t 6= u). In this system, the following formulas are derivable:

∀x∀y (x = y⇒∀z (z x = z y)) ∀x∀y (x = y⇒∀z (x z = y z))

However, even though the reverse of the implication is provable in PAω (see next section 1.3),
the reverse of the second one doesn’t hold in the general case.

TYPED REALIZABILITY FOR FIRST-ORDER CLASSICAL ANALYSIS 5

s of sort (σ → τ → ν) → (σ → τ) → σ → ν k of sort σ → τ → σ

0 of sort ι S of sort ι→ ι

rec of sort σ → (ι→ σ → σ) → ι→ σ

Figure 2: Sorted constants of PAω

(refl) ∀xσ (x =σ x) (Leib) ∀~z~τ ∀xσ ∀yσ (¬A⇒A {y/x} ⇒ x 6=σ y)

(Snz) ∀x Sx 6= 0 (ind) ∀~y (A {0/x} ⇒ ∀x (A⇒A {Sx/x})⇒∀xA)

(∆s) ∀x∀y ∀z sx y z = x z (y z) (∆k) ∀x∀y kx y = x

(∆rec0) ∀x∀y rec x y 0 = x (∆recS) ∀x∀y ∀z rec x y (S z) = y z (rec x y z)

Figure 3: Axioms of PAω

1.3. Peano arithmetic in finite types: PAω. Peano arithmetic in finite types, PAω, is
an extension of Peano arithmetic in which we can write any term of Gödel’s system T and
quantify over functions of any type.

The signature ΣPAω of Peano arithmetic in finite types contains a single base sort ι and
the sorted constants of Figure 2. We will also write 0σ for the inductively defined term:

0σ→τ ∆
= kτ→σ→τ 0τ . PAω is an equational theory as defined in section 1.2, and inequality is

the only predicate symbol:
tσ 6= uσ

The axioms of PAω are given in Figure 3. (refl) and (Leib) are the axioms of equational
theories, (∆s), (∆k), (∆rec0) and (∆recS) are the definitional axioms for the individual
constants s, k and rec, and finally (Snz) and (ind) are the axiom stating that 0 is not a
successor and the axiom scheme of induction for every formula A with free variables among
xι, ~y~σ. Since the predecessor function is definable in system T, the injectivity of the successor:

∀x∀y (Sx = S y⇒ x = y)

is derivable in PAω. Using the provable equality ∀x (S k kx = x), we can prove in PAω:

∀x∀y (∀z (z x = z y)⇒ x = y)

but the status of ∀x∀y (∀z (x z = y z)⇒ x = y) is less clear and we won’t consider it here.

1.3.1. Relation to usual theories. We discuss in this section about the relation between our
version of PAω, in which the inequality predicate is atomic, and other intuitionistic or
classical systems. First, in this section we will consider the following systems:

PA= HA=

PA

⑧⑧⑧
HA

⑧⑧⑧

PAω
= HAω

=

PAω

⑧⑧
HAω

⑧⑧

6 VALENTIN BLOT

where the P/H part corresponds to Peano and Heyting arithmetic, the latter being the
intuitionistic version of the former, the ω part corresponds to the possibility of having higher
type variables, and the = part corresponds to having an atomic predicate for equality while
the absence of = indicates a primitive inequality. The systems without higher type variables
have addition and multiplication as individual constants and their defining equations as
axioms, instead of s, k and rec and their defining equations. For the systems based on a
primitive equality we refer to [TVD88]. In the case of primitive equality, the Leibniz scheme
is:

∀~z~τ∀xσ∀yσ (x = y⇒A⇒A {y/x})

while in the case of primitive inequality we define it is as in section 1.2:

∀~z~τ∀xσ∀yσ (¬A⇒A {y/x} ⇒ x 6= y)

Similarly, in PA= and HA= the injectivity of successor is:

∀xι∀yι (Sx = S y⇒ x = y)

which is derivable in PAω
= and HAω

=, while in PA and HA we define it to be the following
formula:

∀xι∀yι (x 6= y⇒ Sx 6= S y)

which is derivable in PAω and HAω.
It is well known that HA= |∼ ∀xι∀yι (¬¬x = y⇒ x = y), so in our system with only

negative connectives, HA= and PA= prove exactly the same formulas. It is quite easy to
prove also that HA |∼ ∀xι∀yι (¬¬x 6= y⇒ x 6= y), so HA and PA also prove exactly the
same formulas (again, in the particular case of our system with only negative connectives).
However, despite the equivalence of provability between PA and HA, the associated proof
terms are very different. Indeed, the proof of HA |∼ ∀xι∀yι (¬¬x 6= y⇒ x 6= y) is obtained
by a double induction on x and y, while in PA, a proof of PA |∼ ∀xι∀yι (¬¬x 6= y⇒ x 6= y)
can also be obtained through classical logic, in which case its computational content relies
on the control features of languages for classical logic (like λµ-calculus).

When we switch to higher type equalities, things become more complicated. Indeed,
HAω

= fails to prove ∀xσ∀yσ (¬¬x = y⇒ x = y), since we cannot perform induction on higher
type variables, so the systems HAω

= and PAω
= are not equivalent anymore, even at the level

of provability.
For classical systems PAω and PAω

=, a formula with equalities and inequalities is provable
in PAω (through the encoding (x = y) ≡ (x 6= y⇒⊥)) if and only if it is provable in PAω

=

(through the encoding (x 6= y) ≡ (x = y⇒⊥)). However, for intuitionistic systems HAω and
HAω

= things are less clear since double negations cannot be eliminated on atomic formulas.
In particular, we did not investigate the relation between the system HAω with primitive
inequalities and HAω

= or PAω/PAω
=.

1.4. The axiom of choice. In this section, A is a formula over ΣPAω with free variables
among xι, yσ, zσ , ~u~τ . For clarity we write A {t, u, v} instead of A {t/x, u/y, v/z}. Classical
analysis CAω (in the sense of [Koh08]) is defined to be PAω augmented with the following
axiom scheme:

(DC) ∀~u~τ (∀xι ∀yσ ∃zσ A {x, y, z} ⇒ ∃vι→σ ∀xιA {x, v x, v (Sx)})

As proved in [Koh08], (DC) implies in PAω both countable choice:

∀~u~τ (∀xι ∃yσ B ⇒ ∃vι→σ ∀xιB {v x/y})

TYPED REALIZABILITY FOR FIRST-ORDER CLASSICAL ANALYSIS 7

where B has free variables among xι, yσ, ~u~τ , and the more usual version of dependent choice:

∀~u~τ (∀xι ∀yσ ∃zσ A {x, y, z} ⇒ ∀wσ∃vι→σ (v 0 = w ∧ ∀xιA {x, v x, v (Sx)}))

1.5. Models of classical multisorted first-order logic. In this section we recall what
is a model of a given multisorted first-order theory. We fix a signature Σ.

Definition 1.3. A Σ-structure M is given by:

• a set σM for each sort σ constructed from the base sorts of Σ
• an application function from (σ → τ)M × σM to τM

• an element cM ∈ σM for each individual constant cσ of Σ
• a set PM ⊆ σ1

M × ...× σn
M for each sorted predicate P (tσ1

1 , ..., t
σn
n) of Σ

Using the application function, we can extend the interpretation to individuals with
parameters: if t is an individual of sort σ with free variables ~x~τ and if ~a are elements of ~τM,

then (t {~a/~x})M is an element of σM.
As usual in model theory, for any Σ-structure M and any closed formula A on Σ we can

define when M validates A, written M � A. Now we fix a theory Ax on Σ and we define
what is a model of Ax:

Definition 1.4. If M is a Σ-structure, then M is a model of Ax if for any A ∈ Ax:

M � A

The soundness theorem states that if M is a model of Ax, then for any closed formula
A, Ax |∼ A implies M � A. In the particular case of equational theories we fix the
interpretation of the 6=σ predicate to be the following set of pairs of elements of σM:

6=σ
M ∆

=
{
(a, b) ∈ σM × σM

∣∣ a 6= b
}

2. Syntax and semantics of λµ-calculus

In this section, we define the programming language to which we map classical proofs, and
define the categorical model of this language. First, we describe λµ-calculus as a typed
language and give its equational theory under call-by-name semantics before defining how
we map classical proofs in this language. Then we define the language µPCF (that we will
use in order to realize Peano arithmetic and the axiom of choice) as a λµ-theory. Finally we
describe categories of continuations as a model of call-by-name λµ-calculus and we present
the connection between the interpretation of λµ-calculus in categories of continuations and
that of its continuation-passing-style translation in the underlying cartesian category with
exponentials of a fixed object.

8 VALENTIN BLOT

2.1. λµ-calculus. The λµ-calculus is an extension of the λ-calculus introduced by Parigot
in [Par92] in order to represent and evaluate classical proofs. In λµ-calculus, there is another
kind of variables along standard λ-variables: the µ-variables. Just like the λ-variables are
bound by the construct λx.M , the µ-variables (which will be written α, β, ...) are bound
by the new construct of λµ-calculus: µα.M . The other new construct, [α] M should be
understood as a mean for M to get arguments which are passed to the enclosing µα.N .

λµ-calculus provides a direct interpretation of classical proofs just like λ-calculus is an
interpretation of the intuitionistic ones. In classical sequent calculus, sequents are of the form
A1, ..., An ⊢ B1, ..., Bm, and should be interpreted as the formula A1∧ ...∧An⇒B1∨ ...∨Bm.
The interpretation of a proof of such a sequent in λµ-calculus is then a λµ-term with free
λ-variables x1, ..., xn, and free µ-variables α1, ..., αm, xi representing the possibility to use
the hypothesis Ai, and αi representing the possibility to produce (part of) a proof of Bi.
Under this view, a λµ-term may provide many proofs at the same time, each proof being
given step-by-step.

In the original version of [Par92], the terms were restricted to λ-abstractions, applica-
tions and µα. [β] M for some term M . This syntax was extended in [dG94] by allowing
terms µα.M and [α] M . This extension of syntax was used in [Sau05] together with a
well-chosen set of reduction rules (this calculus being called Λµ-calculus) to recover the
separation property that failed in Parigot’s λµ-calculus, as shown in [DP01]. Later on
in [AHS07], Parigot’s version was related to minimal classical logic, and De Groote’s to full
classical logic. Here we use the version of [Sel01] (but without disjunction types), which is in
the lines of [dG94, Sau05]. We recommend [HS09] for an historical overview of the different
versions of λµ-calculus and how they relate to each other.

2.1.1. Type system. The types of λµ-calculus are those of simply typed λ-calculus with a
fixed set of base types (ranged over by X) together with a product type and a distinguished
empty type 0 used to type terms [α] M :

T,U ::= X | T → U | T × U | 0

In addition to the base types, λµ-calculus is parameterized with a fixed set of typed constants:
Cst = {c : T, ...}. These two parameters form a signature of λµ-calculus:

Definition 2.1 (λµ signature). A λµ signature is a set of base types together with a set of
typed constants.

From a λµ signature, we will now define the derivable typing judgments, which are
presented as sequents of the form:

x1 : T1, ..., xn : Tn ⊢M : T | α1 : U1, ..., αm : Um

where the free λ-variables of M are among x1, ..., xn and its free µ-variables are among
α1, ..., αm. The x1 : T1, ..., xn : Tn part will be called the λ-context, and α1 : U1, ..., αm : Um

the µ-context. If the µ-context is empty, then we will simply write:

x1 : T1, ..., xn : Tn ⊢M : T

The derivable typing judgments are defined in Figure 4 for a given signature of λµ-calculus.
The left and right weakening rules are admissible in that type system, and we use them

TYPED REALIZABILITY FOR FIRST-ORDER CLASSICAL ANALYSIS 9

~x : ~T , x : T ⊢ x : T | ~α : ~U
(c:T ∈Cst)

~x : ~T ⊢ c : T | ~α : ~U

~x : ~T , x : T ⊢M : U | ~α : ~U

~x : ~T ⊢ λx.M : T → U | ~α : ~U

~x : ~T ⊢M : T → U | ~α : ~U ~x : ~T ⊢ N : T | ~α : ~U

~x : ~T ⊢MN : U | ~α : ~U

~x : ~T ⊢M : T | ~α : ~U ~x : ~T ⊢ N : U | ~α : ~U

~x : ~T ⊢ 〈M,N〉 : T × U | ~α : ~U

~x : ~T ⊢M : T1 × T2 | ~α : ~U

~x : ~T ⊢ πiM : Ti | ~α : ~U

~x : ~T ⊢M : U | α : U, ~α : ~U

~x : ~T ⊢ [α]M : 0 | α : U, ~α : ~U

~x : ~T ⊢M : 0 | α : U, ~α : ~U

~x : ~T ⊢ µα.M : U | ~α : ~U

Figure 4: Typing rules of λµ-calculus

without explicitly mentioning it. Here are some examples of derivable typing judgments.

⊢ λx.µα.x : 0 → T ⊢ λy.µα.y (λx.[α]x) : ((T → 0) → 0) → T

⊢ λy.µα.[α] y (λx.µβ.[α]x) : ((T → U) → T) → T

The logical counterparts of these terms are respectively the ex falso formula ⊥ ⇒ A, the
double-negation elimination ((A⇒⊥)⇒⊥) ⇒ A and the law of Peirce ((A⇒B)⇒A) ⇒
A, these last two being classical principles. Remark that in the first judgment we write
µα.x, and in the second example we write λx.[α]x. This is a consequence of using the
extended syntax of [dG94, Sau05], where the empty type is handled as any other. The third
term corresponds to the call/cc operator of the Scheme programming language which, as
observed by Griffin in [Gri90], can be typed with the law of Peirce.

2.1.2. Interpreting classical logic in λµ-calculus. Here we interpret every formula A as a
type A∗ of λµ-calculus, and every proof of a sequent Γ ⊢ A | ∆ in a given theory as a
typing derivation of a term Γ∗ ⊢ M : A∗ | ∆∗. The interpratation of the axioms is for the
time being a parameter of the interpretation of proofs, which is the first component of our
realizability interpretation of classical logic.

Fix a first-order signature Σ and a λµ signature. Fix also for each predicate P of Σ a
type P ∗ of λµ-calculus. We extend this interpretation to every formula over Σ the following
way:

⊥∗ = 0 (A⇒B)∗ = A∗ → B∗ (A ∧B)∗ = A∗ ×B∗ (∀xσ A)∗ = A∗

An important fact is that during this interpretation we simply forget about first-order quan-
tifications. This is a Curry-style interpretation (as opposed to a Church-style interpretation).
The effect of this is that the term interpreting a proof of a universal statement must not
depend on the particular individual. This is indeed true for the equational axioms, but when
it comes to the axiom schemes of induction and choice it is no longer the case. For that
reason we will introduce in section 3.1 a relativization predicate. The interpretation of a
formula as a type of λµ-calculus is then extended to contexts: Γ∗ (resp. ∆∗) is a context of
λ-variables (resp. µ-variables) with types B∗ for B in Γ (resp. ∆).

Fix now a first-order theory Ax and for each A ∈ Ax a closed λµ-term MA of type
A∗ which is a parameter of the interpretation. The interpretation of first-order proofs as

10 VALENTIN BLOT

(
Γ, A ⊢ A | ∆

)∗
= Γ∗, x : A∗ ⊢ x : A∗ | ∆∗

(
(A∈Ax)

Γ ⊢ A | ∆

)∗
= Γ∗ ⊢MA : A∗ | ∆∗

(
Γ, A ⊢ B | ∆

Γ ⊢ A⇒B | ∆

)∗

=
Γ∗, x : A∗ ⊢M : B∗ | ∆∗

Γ∗ ⊢ λx.M : A∗ → B∗ | ∆∗

(
Γ ⊢ A⇒B | ∆ Γ ⊢ A | ∆

Γ ⊢ B | ∆

)∗

=
Γ∗ ⊢M : A∗ → B∗ | ∆∗ Γ∗ ⊢ N : A∗ | ∆∗

Γ∗ ⊢MN : B∗ | ∆∗

(
Γ ⊢ A | ∆ Γ ⊢ B | ∆

Γ ⊢ A ∧B | ∆

)∗

=
Γ∗ ⊢M : A∗ | ∆∗ Γ∗ ⊢ N : B∗ | ∆∗

Γ∗ ⊢ 〈M,N〉 : A∗ ×B∗ | ∆∗

(
Γ ⊢ A1 ∧A2 | ∆

Γ ⊢ Ai | ∆

)∗

=
Γ∗ ⊢M : A∗

1 ×A∗
2 | ∆

∗

Γ∗ ⊢ πiM : A∗
i | ∆

∗

(
Γ ⊢ A | ∆

(xσ /∈FV(Γ,∆))
Γ ⊢ ∀xσA | ∆

)∗

= Γ∗ ⊢M : A∗ | ∆∗

(
Γ ⊢ ∀xσA | ∆

Γ ⊢ A {tσ/xσ} | ∆

)∗

= Γ∗ ⊢M : A∗ | ∆∗

(
Γ ⊢ A | A,∆

Γ ⊢ ⊥ | A,∆

)∗

=
Γ∗ ⊢M : A∗ | α : A∗,∆∗

Γ∗ ⊢ [α]M : 0 | α : A∗,∆∗

(
Γ ⊢ ⊥ | A,∆

Γ ⊢ A | ∆

)∗

=
Γ∗ ⊢M : 0 | α : A∗,∆∗

Γ∗ ⊢ µα.M : A∗ | ∆∗

Figure 5: Interpretation of classical proofs in λµ-calculus

typing derivations in λµ-calculus is given in Figure 5. In this interpretation, the structural
rules on the right part of a sequent are interpreted with the µ constructs of λµ-calculus.
Indeed, these rules are the ones which make our system a classical one, so it doesn’t come
as a surprise that they are interpreted using the control features of λµ-calculus.

2.1.3. λµ theories. We follow [Sel01] and define λµ-calculus as an equational theory. We
only consider here the case of call-by-name semantics. The axioms of the call-by-name λµ-
calculus are given in Figure 6, where in each equation the two terms are typed with the
same type. In the equations (ζ→), (ζ×) and (ζ0), is a placeholder for the term coming
after [α], i.e. M {[α] N/ [α] } is obtained by replacing in M all the subterms of the form
[α] P with [α] P N . From these axioms we define the notion of λµ theory:

TYPED REALIZABILITY FOR FIRST-ORDER CLASSICAL ANALYSIS 11

(β→) (λx.M)N =M {N/x} (η→) λx.M x =M (x /∈ FV (M))

(β×) πi 〈M1,M2〉 =Mi (η×) 〈π1M,π2M〉 =M

(β0) [α] µβ.M =M {α/β} (η0) µα. [α] M =M (α /∈ FV (M))

(ζ→) (µα.M)N = µα.M {[α] N/ [α] }

(ζ×) πi (µα.M) = µα.M {[α] πi / [α] }

(ζ0) µα.M =M { / [α] } (α : 0)

Figure 6: Axioms of the call-by-name λµ-calculus

Definition 2.2 (λµ theory). A λµ theory is a set of equations between typed terms of the
same type (with free variables of the same type) which contains the axioms of call-by-name
λµ-calculus and is a congruence (contextually-closed equivalence relation).

We use here a slightly different set of axioms from that of Selinger [Sel01]. Our β0
and η0 equations are the βµ and ηµ equations of Selinger, and we replace his β⊥ (which is
[α] M =M if M : 0) with our ζ0. However, the two systems are equivalent:

Lemma 2.3. Under the contextual closures of β0 and η0 (the βµ and ηµ of Selinger), the
equation β⊥ of Selinger is equivalent to ζ0.

Proof. Suppose β⊥ holds, let M : 0 and α be a µ-variable of type 0. Using the contextual
closure of β⊥, we have M =M { / [α] }, and again by β⊥ we get M = [α] M { / [α] }.
Then by contextual closure µα.M = µα. [α] M { / [α] }, which is equal to M { / [α] }
using η0, since α does not appear free in M { / [α] }.

Conversely, suppose ζ0 holds, let M : 0, α be a µ-variable of type 0 and β be a µ-variable
of type 0 which does not appear free in M . Using ζ0 we have M = µβ.M , so by contextual
closure [α] M = [α] µβ.M , so by β0 we get [α] M = M {α/β}, but M {α/β} = M since β
does not appear free in M , and we get finally [α] M =M .

Replacing Selinger’s β⊥ allows us to have a more symmetric calculus, with a set of three
equations for each type constructor, the ζ equations representing the transmission of the
context of a µα.M to the subterms [α] N .

2.1.4. µPCF. We give here an example of a λµ theory called µPCF, which will also be the
language in which we will interpret Peano arithmetic and the axiom of choice. Programming
language for Computable Functions (PCF) is a functional programming language described
by Plotkin in [Plo77]. It is based on Scott’s Logic for Computable Functions (LCF), which
was presented in [Sco93]. The language contains constants for natural numbers and general
recursion. It is probably the simplest example of a Turing-complete higher-order language.
Here we consider an extension of PCF to primitively handle control operators, by presenting
PCF as a λµ theory. In [OS97] the authors define a call-by-value semantics for λµ-calculus,
and they illustrate it with µPCFV , a call-by-value version of PCF with control. Later on,
Laird defines in [Lai99] its call-by-name version, which is the version we use here. The choice
of this language is justified by our will to get computational content directly from classical
proofs.

12 VALENTIN BLOT

YM =M (YM) succ n = n+ 1 succ (µα.M) =M {succ () / [α] }

pred 0 = 0 pred n+ 1 = n pred (µα.M) =M {pred () / [α] }

if0 0M N =M if0 n+ 1M N = N if0 (µα.M) N P =M {if0 () N P / [α] }

Figure 7: Equations of µPCF

Our version of µPCF has only one base type for natural numbers: I, and the constants
are:

n : I succ : I → I pred : I → I if0 : I → T → T Y : (T → T) → T

It will also be useful to have a canonical term on each type so we define:

Ω
∆
= Y (λx.x) : T

This term represents non-termination, or “undefined”. The equations of µPCF given in
Figure 7 are standard and include the interactions of the constants with the µ operator. We
can finally define µPCF as the λµ theory generated by these equations:

Definition 2.4 (µPCF). The λµ theory µPCF is the smallest λµ theory containing the
equations of Figure 7.

2.2. Categories of continuations. Categories of continuations are to call-by-name λµ-
calculus what cartesian closed categories are to λ-calculus, in the sense that if we fix a sig-
nature, there is a one-to-one correspondence between λµ theories and categories of continua-
tions together with an interpretation of the signature. Ong defines λµ categories in [Ong96]
by reformulating the syntax of λµ-calculus in categorical terms. Later on, Hofmann and
Streicher proved the soundness and completeness of categories of continuations with respect
to λµ-calculus, providing the first abstract version of λµ-categories. Finally, Selinger axiom-
atized these in [Sel01] under the name of control categories, proving that they are equivalent
(for a suitable notion of equivalence based on weak functors) to categories of continuations,
and therefore sound and complete with respect to call-by-name λµ-calculus. Moreover, he
proved that the categorical dual of control categories are sound and complete with respect
to call-by-value λµ-calculus. Here we are only interested in the call-by-name version, and
we use the model of categories of continuations.

Definition 2.5 (Category of continuations). Let C be a distributive category, that is, a cat-
egory with finite products and coproducts such that the canonical distributivity morphisms
from A × B + A × C to A × (B + C) are isomorphisms (which implies that the morphism
from 0 to A× 0 is also an isomorphism), and let R ∈ Ob (C) be a fixed object such that all
exponentials RA for A ∈ Ob (C) exist. Then the full subcategory RC of C consisting of the
objects RA for A ∈ C is called a category of continuations.

We will differentiate morphisms in C and RC by writing ж, и
1 for morphisms in C and

φ, ψ, ζ, ξ for morphisms in RC . As observed in [LRS93], a category of continuations RC is
in particular a cartesian closed category:

1Pronounced as in Доктор Живаго (Doctor Zhivago).

TYPED REALIZABILITY FOR FIRST-ORDER CLASSICAL ANALYSIS 13

Lemma 2.6. If RC is a category of continuations, then R0 defines a terminal object and
RA+B defines a cartesian product of RA and RB, so RC is cartesian. Moreover, if A ∈ Ob (C)
and RB ∈ Ob

(
RC
)
, then RA×B defines an exponential in C of RB by A. Consequently, RC

is cartesian closed, the exponential of RB by RA being RRA×B.

Be careful that we have two (isomorphic) terminal objects, one in C and one in RC,
and two (isomorphic) products of RA and RB, again one in C and one in RC . To avoid
confusion and without loss of generality we will suppose that they are equal: R0 = 1 and
RA+B = RA ×RB . For the same reason, we also suppose R = R1.

2.2.1. Classical disjunction in categories of continuations. We could have added a primitive
connective ∨ for the disjunction in the logic, with the following rules:

Γ ⊢ A ∨B | ∆, A,B

Γ ⊢ ⊥ | ∆, A,B

Γ ⊢ ⊥ | ∆, A,B

Γ ⊢ A ∨B | ∆

and then interpret these logical rules by adding the following typing rules to λµ-calculus:

~x : ~T ⊢M : U1 ` U2 | ~α : ~U, β1 : U1, β2 : U2

~x : ~T ⊢ [β1, β2] M : 0 | ~α : ~U, β1 : U1, β2 : U2

~x : ~T ⊢M : 0 | ~α : ~U, β1 : U1, β2 : U2

~x : ~T ⊢ µ (β1, β2) .M : U1 ` U2 | ~α : ~U

These rules are present in [Sel01], however we choose here to keep things simple and stick
to the usual λµ-calculus without disjunction types. Nevertheless we still use the binoidal
functor ` in categories of continuations to interpret multi-conclusioned sequents. Follow-

ing [Sel01] we write: RA ` RB ∆
= RA×B for the interpretation of the classical disjunction

between RA and RB , i : R → RA for the interpretation of the right weakening rule and
∇ : RA `RA → RA for the interpretation of the right contraction rule.

Another interesting fact about categories of continuations is that we can define a functor
from Cop to RC which maps A ∈ Ob (C) to RA ∈ Ob

(
RC
)
, and ж : A→ B to Rж : RB → RA

which is the currying of:

RB ×A
Id

RB×ж
// RB ×B

ev
// R

The morphism i : R→ RA corresponds to R1A (where 1A is the unique morphism from A to

the terminal object 1) and the morphism ∇ : RA `RA → RA corresponds to Rpair(IdA,IdA)

(remember that RA`RA = RA×A). Also, in particular, if A ≃ B in C, then RA ≃ RB in RC

(and in C). Through this functor, the cocartesian structure of C translates to the cartesian
structure of RC .

2.2.2. Interpretation of λµ-calculus in categories of continuations. We describe here the
interpretation of call-by-name λµ-calculus in a category of continuations as defined in [Sel01].
We fix a signature of λµ-calculus and a category of continuations RC . To each type T of
λµ-calculus we associate an object JT K ∈ Ob (C) of continuations of type T , and an object

[T] = RJT K ∈ Ob
(
RC
)

of computations of type T . The objects JXK ∈ Ob (C) where X is a
base type of the signature are parameters of the interpretation, and we define inductively:

JT → UK = [T]× JUK ∈ Ob (C) JT × UK = JT K + JUK ∈ Ob (C)
J0K = 1 [T] = RJT K ∈ Ob

(
RC
)

14 VALENTIN BLOT

We have in particular [T × U] = RJT K+JUK = RJT K×RJUK = [T]×[U] where × is the cartesian

product in RC defined above, [T → U] = R[T]×JUK = RRJTK×JUK =
(
RJUK)RJTK

= [U][T], using

the definition of the exponential in RC given above, and [0] = R1 = R.
Once we have an interpretation of types in RC , we define the interpretation of typed

λµ-terms such that a term:

x1 : T1, ..., xn : Tn ⊢M : V | α1 : U1, ..., αm : Um

is interpreted as a morphism in RC:

[x1 : T1, ..., xn : Tn ⊢M : V | α1 : U1, ..., αm : Um] : [T1]× ...× [Tn] → [V]` [U1]` ...` [Um]

where [T1] × ... × [Tn] associates to the left and [V] ` [U1] ` ... ` [Um] associates to the
right. In order to do that, we suppose given for each constant c : T ∈ Cst of the signature a
morphism in RC :

[c : T] : 1 → [T]

which is again a parameter of the interpretation. These parameters are summarized in the
following definition:

Definition 2.7 (Interpretation). Given a signature and a category of continuations RC, an
interpretation of λµ-calculus is given by an object JXK ∈ C for each base type X of the
signature and a morphism [c : T] : 1 → [T] in RC for each constant c : T ∈ Cst of the
signature.

We now have all necessary material to interpret every typed λµ-term as a morphism
in RC . The interpretation of typed λµ-terms is almost identical to the interpretation of λ-
calculus in a cartesian closed category (since as shown in the previous section, RC is cartesian
closed). The first difference is that we must be able to carry over the µ-context, so we want
to build from φ : [T] → [U] a morphism φ` [V] : [T]` [V] → [U]` [V]. The second difference
is that in order to interpret the introduction rules for µα.M and [α] M , we also need to

have canonical morphisms from [0] `
[
~U
]
` [T] to [T] `

[
~U
]

and from [T] `
[
~U
]
` [T] to

[0]`
[
~U
]
` [T]. These requirements are axiomatized in [Sel01], to which we refer for the full

definition of the interpretation, and the proof that the axioms of call-by-name λµ-calculus
are sound under this interpretation.

A model of a λµ theory is then a sound interpretation:

Definition 2.8 (Model of a λµ theory). A model of a λµ theory is a category of continuations
together with an interpretation for the λµ signature such that every equation M = N of the
theory is true in the model: [M] = [N].

If the λµ theory is generated from a given set of equations, then any interpretation
satisfying these equations is a model of the λµ theory.

Since call-by-name λµ-calculus is the internal language of categories of continuations
(as shown in [Sel01]), we can apply λµ-calculus constructs on morphisms of RC through
the use of λµ-terms with parameters in RC. Therefore, we will also drop the interpretation
brackets for terms. For example, if φ :

∏
j∈J R

Aj → RB`
(˙

k∈K RDk
)

and ψ :
∏

j∈J R
Aj →

RRB×C `
(˙

k∈K RDk
)
, then ψ φ :

∏
j∈J R

Aj → RC `
(˙

k∈K RDk
)
, where formally ψ φ is

the term with parameters (y x) {φ/x, ψ/y}.

TYPED REALIZABILITY FOR FIRST-ORDER CLASSICAL ANALYSIS 15

~k : ~T , k : T ⊢ k : T
(̃c:

(

T̃→R
)

∈Cst)
~k : ~T ⊢ c̃ :

(
T̃ → R

)

~k : ~T , k : T ⊢M : R

~k : ~T ⊢ λk.M : T → R

~k : ~T ⊢M : T → R ~k : ~T ⊢ N : T
~k : ~T ⊢MN : R

Γ ⊢ ∗ : 1
~k : ~T ⊢M : T ~k : ~T ⊢ N : U

~k : ~T ⊢ 〈M,N〉 : T × U

~k : ~T ⊢M : T1 × T2
~k : ~T ⊢ πiM : Ti

Γ ⊢M : Ti
Γ ⊢ iniM : T1 + T2

Γ ⊢M : T1 + T2 Γ, k : T1 ⊢ N1 : U Γ, k : T2 ⊢ N2 : U

Γ ⊢ caseM {in1 k 7→ N1 | in2 k 7→ N2} : U

Figure 8: Typing rules of λR×+

2.2.3. Connection with the call-by-name CPS translation of λµ-calculus. Another interesting
thing about the interpretation of λµ-calculus into a category of continuations is the exact
correspondence with the interpretation of its call-by-name CPS translation in the underlying
cartesian “R-closed” category, as stressed in [HS02]. The target of such a translation is a
simply-typed λ-calculus λR×+ with product and sum types, a particular base type R, and
the function types being restricted to T → R. This particular λ-calculus can be interpreted
in C by interpreting the product type as the product in C, the sum type as the coproduct,
and using the fact that function types are of the form T → R, so having all exponentials
RA in C is enough.

To be more precise, λR×+ has one base type X̃ for each base type X of λµ-calculus and
another particular base type R. From these we build the types:

T,U ::= X̃ | T → R | T × U | 1 | T + U

The arrow types are syntactically restricted to be of the form T → R. We map every type
T of λµ-calculus to a type T̃ of λR×+ (each base type X being obviously mapped to X̃) as
follows:

T̃ → U =
(
T̃ → R

)
× Ũ T̃ × U = T̃ + Ũ 0̃ = 1

λR×+ also has one constant c̃ : T̃ → R for each constant c : T of the source language. We
also suppose given for each λ-variable x : T of the source language a variable x̃ : T̃ → R in
the target language, and for each µ-variable α : U of the source language a variable α̃ : Ũ
in the target language. A typed λµ-term:

x1 : T1, ..., xn : Tn ⊢M : T | α1 : U1, ..., αm : Um

will then be translated to a typed λ-term:

x̃1 : T̃1 → R, ..., x̃n : T̃n → R, α̃1 : Ũ1, ..., α̃m : Ũm ⊢ M̃ : T̃ → R (2.1)

Before defining the translation, we give the typing rules of λR×+ in Figure 8. The typing
rules for the arrow type are restricted to the case T → R. The translation of a variable x or
a constant c is x̃ or c̃ as defined above, and the remaining part is given in Figure 9, where
k is always a fresh variable. We define the interpretation of λR×+ in C by first giving an
object JT K of C for each type T :
q
X̃

y
= JXK JT → RK = RJT K JT × UK = JT K × JUK J1K = 1 JT + UK = JT K + JUK

16 VALENTIN BLOT

λ̃x.M = λk.
(
λx̃.M̃

)
(π1 k) (π2 k) M̃ N = λk.M̃

〈
Ñ , k

〉

˜〈M,N〉 = λk.case k
{
in1 l 7→ M̃ l | in2 l 7→ Ñ l

}
π̃iM = λk.M̃ ini k

µ̃α.M = λα̃.M̃ ∗ [̃α] M = λk.M̃ α̃

Figure 9: Translation of λµ-calculus in λR×+

(
βλ→

)
(λk.M)N =M {N/k}

(
ηλ→

)
λk.M k =M (k /∈ FV (M))

(
βλ×

)
πi 〈M1,M2〉 =Mi

(
ηλ×

)
〈π1M,π2M〉 =M

(
βλ+

)
case (iniM)

{
in1 k 7→ N1

in2 k 7→ N2

}
= Ni {M/k}

(
ηλ+

)
caseM

{
in1 k 7→ in1 k

in2 k 7→ in2 k

}
=M

(
ηλ1

)
∗ =M

Figure 10: Axioms of λR×+

The notation J K may seem misleading, but it is on purpose, since one can easily see that
if T is a type of λµ-calculus, then

q
T̃

y
= JT K, where on the left the type T̃ of λR×+ is

interpreted in C, and on the right the type T of λµ-calculus is interpreted in RC . Since the
only function types of our λ-calculus are of the form T → R and since C has all exponentials
RA, we can interpret M̃ in C the same way we would interpret simply typed λ-calculus in a
cartesian closed category. The term M̃ of (2.1) is interpreted as:

M̃ : R

r
T̃1

z

× ...×R

r
T̃n

z

×
q
Ũ1

y
× ...×

q
Ũm

y
→ R

r
T̃

z

which is, by the above observation that
q
T̃

y
= JT K:

M̃ : RJT1K × ...×RJTnK × JU1K × ...× JUmK → RJT K

Now, by currying we obtain:

Λ
(
M̃
)
: RJT1K × ...×RJTnK → RJT K×JU1K×...×JUmK

and we have the following result:
Λ
(
M̃
)
=M

where the brackets on the left represent the interpretation of λR×+ in the cartesian “R-
closed” category C, and the brackets on the right represent the interpretation of λµ-calculus
in the category of continuations RC .

On the equational side, the equations of λR×+ are given in Figure 10, where the two
terms are of the same type: Since these equations are typed, M is of type 1 in

(
ηλ1
)
. If M

and N are λµ-terms of the same type, then M = N holds using the equations (β→), (η→),
(ζ→), (β×), (η×), (ζ×), (β0), (η0) and (ζ0) of section 2.1.3 if and only if M̃ = Ñ holds using
the equations

(
βλ→
)
,
(
ηλ→
)
,
(
βλ×
)
,
(
ηλ×
)
,
(
βλ+
)
,
(
ηλ+
)

and
(
ηλ1
)
.

Just as we did for λµ-calculus and categories of continuations, we use terms of λR×+

with parameters in C. For example, if ж :
∏

j∈J Ai → B and и :
∏

j∈J Ai → RB, then

иж :
∏

j∈J Ai → R, where formally и ж is the term with parameters (y x) {ж/x,и/y}.

TYPED REALIZABILITY FOR FIRST-ORDER CLASSICAL ANALYSIS 17

[〈
φ̃,ж

〉]
ψ = [ж] ψ φ if

φ :
∏

j∈J

RAj → RB `
(
¸

k∈K

RDk

)

ψ :
∏

j∈J

RAj → RRB×C `
(
¸

k∈K

RDk

)

ж :

∏

j∈J

RAj

×

(
∏

k∈K

Dk

)
→ C

[∗] φ = φ if φ :
∏

j∈J

RAj → R1 `
(
¸

k∈K

RDk

)

[ini ж] φ = [ж] πi φ if

φ :
∏

j∈J

RAj →
(
RB1 ×RB2

)
`
(
¸

k∈K

RDk

)

ж :

∏

j∈J

RAj

×

(
∏

k∈K

Dk

)
→ Bi

Figure 11: Interactions between C and RC

2.2.4. Interactions between C and RC. We will also extend the λµ-terms with parameters of
section 2.2.2 by allowing the substitution of terms of λR×+ with parameters in C (defined
in section 2.2.3) for µ-variables of λµ-terms with parameters in RC . For example, if φ :∏

j∈J R
Aj → RB `

(˙
k∈K RCk

)
in RC and ж :

(∏
j∈J R

Aj

)
×
(∏

k∈K Ck

)
→ B in C, then

[ж] φ :
∏

j∈J R
Aj → R1 `

(˙
k∈K RCk

)
in RC . As expected, we can prove the equations of

Figure 11 This possibility of having terms of λR×+ inside the brackets of λµ-terms is closely
related to the λµµ̃-calculus of [Her95, CH00], extended to handle products (using sums of
λR×+).

3. A realizability model for classical analysis

In this section, we define a realizability model which is based on the duality between realizers
and counter-realizers. First, we explain the relativization needed to interpret the recursion
scheme and the axiom of choice, then we define the realizability relation and we prove its
adequacy for first-order logic, Peano arithmetic and the axiom of choice. Finally, we use our
orthogonality-based model to extract computational content from classical proofs.

3.1. The relativization predicate. In the following we will consider two kinds of quantifi-
cations: the uniform and the relativized ones. From the point of view of provability in the
two theories PAω and CAω considered in this article, this will not change anything. Indeed,
we will define for PAω and CAω (which have uniform quantifications only) their relativized
versions PAωr and CAωr (which have both uniform and relativized quantifications). Then
we will describe a mapping from PAω (resp. CAω) to PAωr (resp.CAωr), and we will perform
our realizability interpretation in the relativized theories.

18 VALENTIN BLOT

Relativization is a technique that was already used in Krivine’s models [Kri94, OS08,
Miq11], and its utility will appear more clearly in the realizability interpretation. A realizer
of ∀xA (uniform quantification) is an element which must be a realizer of A {a/x} for every
instance a of x, whereas a realizer of ∀rxA (relativized quantification) is a function that turns
any instance a of x into a realizer of A {a/x}. The uniform quantifiers suffice to realize the
rules of first-order logic and Leibniz equality, but when it comes to Peano arithmetic, and
more particularly to the axiom scheme of induction, the recursor of Gödel’s system T needs
to know on which particular natural number to recurse. A simple and intuitive example
arises when we use the induction scheme to perform case-analysis: we prove on one hand
A {0}, and on the other hand A {n} for n 6= 0, so by case-analysis we get ∀rxA (note the
relativized quantification). Then the corresponding program must read the natural number,
test if it is zero, and then branch to the corresponding program. One solution would have
been to relativize all quantifiers, however relativizing only when it is necessary gives a better
understanding of the realizability interpretation and simpler extracted programs.

We explain now how we map proofs of a theory into proofs of a relativized version of
the theory. Fix a theory Ax on a signature Σ. Let Σr be the signature obtained by adding
to Σ a predicate symbol for each base sort ι of Σ:

L.ιM
We lift it to every sort with the following syntactic sugar:

Ltσ→τ M ∆
= ∀xσ LxσM ⇒ Lt xτ M (so in particular L.σ→τ M∗ = L.σM∗ → L.τ M∗)

First, since Σ ⊆ Σr, Ax can be considered as a theory on Σr. We also define syntactic sugar
for relativized quantifications:

∀rxσ A
∆
= ∀xσ (LxσM ⇒A) ∃rxσ A

∆
= ¬∀rxσ ¬A

and we define inductively the relativization Ar (on the signature Σr) of a formula A (on the
signature Σ):

P (tσ1

1 , ..., t
σn
n)r

∆
= P (tσ1

1 , ..., t
σn
n) ⊥r ∆

= ⊥

(A⇒B)r
∆
= Ar ⇒Br (A ∧B)r

∆
= Ar ∧Br (∀xσ A)r

∆
= ∀rxσ Ar

This translation is extended to contexts the obvious way, so we write Γr and ∆r.
Before going through the relativization of a theory, we first parameterize the syntax of

our logic by splitting the set of basic predicates between positive and negative predicates.
The negative predicates are those P for which ¬¬P ⇒ P is valid under the realizability
interpretation, and this notion is fundamental when it comes to relativized theories. Indeed,
while the inequality predicate of PAω is negative, the relativization predicate is positive and
cannot be defined from a negative one.

Formally, we extend the definition of the signature of a logical system by distinguishing
the negative predicate symbols (written P−) from the positive ones (written P+). We then
extend this to all formulas of the logic by defining the following subsets of negative and
positive formulas:

A−, B− ::= P− (tσ1

1 , ..., t
σn
n) | ⊥ | A⇒ B− | A− ∧B− | ∀xσA−

A+, B+ ::= P+ (tσ1

1 , ..., t
σn
n) | A⇒B+ | A+ ∧B | A ∧B+ | ∀xσA+

where the absence of polarity means that it can be either. In usual interpretations of classical
proofs every formula has both a positive and a negative interpretation, which are orthogonal

TYPED REALIZABILITY FOR FIRST-ORDER CLASSICAL ANALYSIS 19

to each other. This is is reflected on the computational side by the duality between terms
and contexts. The relativization predicate, however, only has a positive interpretation. In
order for our logical rules to be valid under the realizability interpretation, we restrict our
sequents by asking the right-hand context to contain only negative formulas. Formally, in a
sequent:

Γ ⊢ A | ∆

the formulas appearing in ∆ must all be negative, which will be emphasized from now on by
writing ∆−. There are no other requirements, so A and formulas of Γ can be either positive
or negative. This restriction on the syntax of the sequents roughly amounts to forbid the
structural rules on the right for positive formulas. In particular ⊢ ⊥⇒ A and ⊢ ¬¬A⇒ A
are provable only if A is a negative formula. This restriction will appear as necessary in the
proof of the adequacy lemma for first-order logic 3.10.

One could think at first sight that these polarities are related to the ones of LC [Gir91],
however there is an important mismatch in the case of implication, where in LC A⇒ B is
negative iff A is positive or B is positive, while in our setting it has the same polarity as
B. After a discussion with Olivier Laurent, it appeared that the polarities defined here are
more related to the system LU [Gir93], where our positive formulas are LU formulas with
polarity 0, our negative formulas are LU formulas with polarity −1, our ⇒ is LU’s ⊃, our
∧ is LU’s & and our ∀x is LU’s

∧
x. A sequent Γ ⊢ A | ∆ in our setting then corresponds

to a sequent ; Γ ⊢ ∆;A in LU.
For equational theories, the inequality predicate is defined to be negative. Since the

inequality predicate is the only predicate of ΣPAω = ΣCAω , all the formulas written on this
signature are negative, and therefore the proofs in PAω and CAω automatically respect the
negativeness condition.

Since the negative predicates do not carry computational content, we also fix their
interpretation to be the empty type of λµ-calculus:

P−∗ ∆
= 0

We now describe the process of relativization of a theory. In this process, the new predicate
symbol L.M is defined to be positive, while the other predicates of Σ keep their polarity. First,
an important fact is that the relativization of formulas preserves polarity:

Lemma 3.1. If A− (resp. A+) is a negative (resp. positive) formula over the signature Σ,
then A−r

(resp. A+r
) is a negative (resp. positive) formula over the signature Σr (obtained

by adding a positive relativization predicate L.ιM for each base sort ι).

Proof. By induction on A− (resp. A+).

A relativized version of a theory Ax on Σ is then a set of axioms Axr on the signature
Σr such that if A is provable in Ax, then Ar is provable in Axr. Be careful however that Axr

is in general different from {Ar | A ∈ Ax}. The following lemma gives a sufficient condition
for Axr to be a relativized version of Ax:

Lemma 3.2. If Axr is a theory on Σr such that:

• for any constant individual cσ of Σ, Axr |∼ LcσM
• for each A ∈ Ax, Axr |∼ Ar

• for each sort σ of Σ, there is a closed term tσ

then for any closed formula A on Σ:

Ax |∼ A =⇒ Axr |∼ Ar

20 VALENTIN BLOT

Γ ⊢ A− | A−,∆−

Γ ⊢ ⊥ | A−,∆−

L~x~σM,Γr ⊢ A−r
| A−r

,∆−r

L~x~σM,Γr ⊢ ⊥ | A−r
,∆−r

Γ ⊢ ⊥ | A−,∆−

Γ ⊢ A− | ∆−

L~x~σM,Γr ⊢ ⊥ | A−r
,∆−r

L~x~σM,Γr ⊢ A−r | ∆−r

Γ, A ⊢ B | ∆−

Γ ⊢ A⇒B | ∆−

L~x~σM,Γr, Ar ⊢ Br | ∆−r

L~x~σM,Γr ⊢ Ar ⇒Br | ∆−r

Γ ⊢ A⇒B | ∆− Γ ⊢ A | ∆−

Γ ⊢ B | ∆−

L~x~σM,Γr ⊢ Ar ⇒Br | ∆−r L~x~σM,Γr ⊢ Ar | ∆−r

L~x~σM,Γr ⊢ Br | ∆−r

Γ ⊢ A | ∆− Γ ⊢ B | ∆−

Γ ⊢ A ∧B | ∆−

L~x~σM,Γr ⊢ Ar | ∆−r L~x~σM,Γr ⊢ Br | ∆−r

L~x~σM,Γr ⊢ Ar ∧Br | ∆−r

Γ ⊢ A1 ∧A2 | ∆
−

Γ ⊢ Ai | ∆
−

L~x~σM,Γr ⊢ Ar

1 ∧A
r
2 | ∆

−r

L~x~σM,Γr ⊢ Ar
i | ∆

−r

Figure 12: Relativization of the rules for logical connectives

Proof. We translate inductively every proof in the theory Ax (on the signature Σ) of a
sequent:

Γ ⊢ A | ∆−

to a proof in Axr (on the signature Σr) of a sequent:

L~x~σM,Γr ⊢ Ar | ∆−r

where FV (Γ, A,∆) ⊆ ~x~σ. The translation of a proof ⊢ A in Ax for A a closed formula is then
a proof in Axr of a sequent L~x~σM ⊢ Ar. Indeed, some dummy variables may appear during
the translation, without appearing free in A (this is due to our system not satisfying the
subformula property). In order to eliminate these, we use the last hypothesis: from L~x~σM ⊢ Ar

where A (and therefore Ar) is closed we can derive ⊢ ∀r~x~σAr, and then ⊢ L~t~σM ⇒ Ar where
~t~σ are closed individuals obtained from the last hypothesis. Finally, using lemma 3.3 below,
we can combine the proof of ⊢ L~t~σM ⇒Ar with proofs of L~t~σM and get a proof of ⊢ Ar.

The translation of the axiom rule follows from the hypotheses of the lemma, the identity
rule is translated as follows, with ~x~σ = FV (Γ, A,∆):

Γ, A ⊢ A | ∆− L~x~σM,Γr, Ar ⊢ Ar | ∆−r

The rules for logical connectives are translated trivially as in Figure 12, where in the cases of
introduction of implication and conjunction, the two premises can get the same relativized
variables on the left by applying the (admissible) left weakening rule when necessary. The
translation of the introduction of universal quantification is given by:

Γ ⊢ A | ∆−

(yτ /∈FV(Γ,∆−))
Γ ⊢ ∀yτA | ∆−

Lyτ M, L~x~σM,Γr ⊢ Ar | ∆−r

L~x~σM,Γr ⊢ Lyτ M ⇒ Ar | ∆−r

(yτ /∈FV(L~x~σM,Γr,∆−r))
L~x~σM,Γr ⊢ ∀yτ (Lyτ M ⇒Ar) | ∆−r

TYPED REALIZABILITY FOR FIRST-ORDER CLASSICAL ANALYSIS 21

and preserves the fact that all the free variables of a sequent are relativized in the context.
Finally, in order to translate the elimination of the universal quantification we must prove
that we can lift relativization to all constructs on individuals. This can be obtained using
the hypothesis of the lemma requiring that for every individual constant cσ of Σ, Axr |∼ LcσM.
Indeed, we have the following lemma:

Lemma 3.3. Suppose that for every individual constant cσ of Σ, Axr |∼ LcσM. Let tσ be an
individual of the logic with free variables ~x~ν . We have:

Axr |∼ ∀r~x~ν LtσM
Proof. We prove it by induction on tσ. If tσ is some cσ , then this is an assumption of
the lemma. If tσ is a variable xσ, then ∀rxσ LxσM ≡ ∀xσ (LxσM ⇒ LxσM), which is trivially
derivable, and if tσ is uτ→σ vτ , then we get L~x~νM ⊢ ∀yτ (Lyτ M ⇒ L(u y)σM) and L~x~νM ⊢ Lvτ M
from the induction hypotheses, so we obtain L~x~νM ⊢ L(u v)σM and ⊢ ∀r~x~ν L(u v)σM.

Now we can describe the translation of the elimination rule of the universal quantifier:

Γ ⊢ ∀yτA | ∆−

Γ ⊢ A {tσ/yτ} | ∆−

L~x~σM,Γr ⊢ ∀ryτ Ar | ∆−r

L~x~σM,Γr ⊢ LtσM ⇒ A {t/y}r | ∆−r

...

L~x~σM,Γr ⊢ LtσM | ∆−r

L~x~σM,Γr ⊢ A {t/y}r | ∆−r

where we can suppose without loss of generality that FV (tσ) ⊆ ~x~σ (using the admissible
left weakening rule if necessary), and L~x~σM,Γr ⊢ LtσM | ∆r is easily derivable using ∀r~z~ν LtσM
(with ~z~ν = FV (tσ) ⊆ ~x~σ) from lemma 3.3.

Finally, the negativeness of the formulas in the right-hand context is preserved through
the relativization, thanks to lemma 3.1.

3.1.1. Relativized PAω: PAωr. We now define the relativized version PAωr of PAω, to which
we apply lemma 3.2. First, ΣPAωr is Σr

PAω , that is ΣPAω augmented with the positive
predicate symbol LtιM. The axioms of PAωr are those of PAω (unrelativized) where the
induction scheme is replaced with:

(indr) ∀~y (A {0/x} ⇒ ∀rx (A⇒A {Sx/x})⇒∀rxA)

plus the axioms L0ιM and LSι→ιM. Notice that (indr) is different from (ind)r (the parameters
~y are not relativized). In order to use lemma 3.2 we need the following lemmas:

Lemma 3.4.

PAωr |∼ LsM PAωr |∼ LkM PAωr |∼ LrecM
Proof. The formulas LsM and LkM are provable using the axioms of equality and respectively
(∆s) and (∆k). Indeed, LsM is the following formula:

∀xσ→τ→ν (LxM ⇒∀yσ→τ (LyM ⇒∀zσ (LzM ⇒ Lsx y zM)))
which is equivalent in first-order logic to:

∀xσ→τ→ν∀yσ→τ∀zσ (LxM ⇒ LyM ⇒ LzM ⇒ Lsx y zM)
using (∆s) and (Leib) this is equivalent to:

∀xσ→τ→ν∀yσ→τ∀zσ (LxM ⇒ LyM ⇒ LzM ⇒ Lx z (y z)M)

22 VALENTIN BLOT

and since LxM and LyM are the following formulas:

∀xσ1 (Lx1M ⇒∀xτ2 (Lx2M ⇒ Lxx1 x2M)) ∀yσ1 (Ly1M ⇒ Ly y1M)
we can instantiate these with x1 ≡ z, x2 ≡ y z and y1 ≡ z to obtain a proof of LsM. The case
of LkM is similar.

Similarly, LrecM is provable using the axioms of equality, (∆rec0), (∆recS) and (indr).
LrecM is equivalent in first-order logic to:

∀xσ∀yι→σ→σ (LxM ⇒∀ryι1∀y
σ
2 (Ly2M ⇒ Ly y1 y2M)⇒∀rzιLrec x y zM)

if we instantiate y2 with rec x y y1 it is sufficient to prove:

∀xσ∀yι→σ→σ (LxM ⇒∀ryι1 (Lrec x y y1M ⇒ Ly y1 (rec x y y1)M)⇒∀rzιLrec x y zM)
which is equivalent, using (∆rec0), (∆recS) and (Leib), to:

∀xσ∀yι→σ→σ (Lrec x y 0M ⇒∀ryι1 (Lrec x y y1M ⇒ Lrec x y (S y1)M)⇒∀rzιLrec x y zM)
which is an instance of (indr) with the formula Lrec x y zM.

Moreover, these proofs of LsM, LkM and LrecM respect the condition of having only negative
formulas in the right-hand context, since this context is empty (which means that the proofs
are valid in minimal logic).

Lemma 3.5. For any A ∈ PAω, PAωr |∼ Ar.

Proof. For (∆s), (∆k), (∆rec0), (∆recS) and (Snz) it follows from the fact that the formula
∀xA⇒∀rxA is derivable in first-order logic. For (ind) it comes from this and the fact that
the following formula:

∀~y (Ar {0/x} ⇒ ∀rx (Ar ⇒Ar {Sx/x})⇒∀rxAr)

is an instance of (indr). Here again, the right-hand context is empty so the proofs are
correct.

Lemma 3.6. For every sort σ on ΣPAω , there is a closed individual tσ.

Proof. 0σ from section 1.3 is such a term.

Using these three lemmas, it follows from lemma 3.2 that for any closed formula A on
the signature ΣPAω :

PAω |∼ A =⇒ PAωr |∼ Ar

3.1.2. Interpreting PAωr in system T + Ω. System T was introduced by Gödel in [Göd58]
in order to give a consistency proof of Heyting arithmetic (and therefore of Peano arithmetic
by double-negation translation). This system can be equivalently formulated as a system
of primitive recursive functionals, which is an extension of primitive recursive functions to
higher types. It is strictly more powerful than primitive recursion, since for example the
Ackermann’s function is expressible in system T.

System T has one base type I for natural numbers, product and function types, constants
for 0 and successor, and a recursion operator of type T → (I → T → T) → I → T for any
type T . Restricting the type of the recursor to T = I gives back the usual primitive recursive
functions.

TYPED REALIZABILITY FOR FIRST-ORDER CLASSICAL ANALYSIS 23

M(refl)
∆
= λx.x : 0 → 0 M(∆k)

∆
= λx.x : 0 → 0

M(Leib)
∆
= λx.x : (A∗ → 0) → A∗ → 0 M(∆s)

∆
= λx.x : 0 → 0

M(Snz)
∆
= Ω : 0 M(∆rec0)

∆
= λx.x : 0 → 0

M(indr)
∆
= rec : B∗ → (I → B∗ → B∗) → I → B∗ M(∆recS)

∆
= λx.x : 0 → 0

MLkM
∆
= λxy.x : T → U → T MLsM

∆
= λxyz.x z (y z) : (T → U → V) → (T → U) → T → V

ML0M
∆
= 0 : I MLSM

∆
= succ : I → I MLrecM

∆
= rec : T → (I → T → T) → I → T

Figure 13: Interpretation of the axioms of PAωr

Since µPCF contains constants for every natural number, successor, predecessor and
general recursion, it is easy to encode system T in it. Indeed, if we define:

rec
∆
= λxy.Y (λzu.if0 ux (y (pred u) (z (pred u))))

Then it is easy to derive:

rec : T → (I → T → T) → I → T

and in order to prove that it implements Gödel’s recursor we must prove that it satisfies the
corresponding equations:

Lemma 3.7. Let M : T and N : I → T → T . We have:

recM N 0 =M

and for any n ∈ N:
recM N n+ 1 = N n (recM N n)

Proof. This follows easily from the definition of rec and the equations of µPCF for pred, if0
and Y.

Therefore in the following we will consider system T as a subsystem of µPCF. We will
also use the constant Ω to interpret the fact that 0 is not a successor. In order to interpret
PAωr in system T + Ω, we first fix the interpretation of the relativization predicate:

L.ιM∗ ∆
= I

The inequality predicate being a negative one, it is interpreted as 0. Finally, we provide
a term MA of type A∗ for each A ∈ PAωr in Figure 13, where B is a formula with free
variables among xι, ~y~σ.

3.1.3. Relativized axiom of choice. As we did for PAω, we define the relativized version
CAωr of CAω. First, the signature is the same as ΣPAωr : it is ΣCAω = ΣPAω augmented
with a positive predicate symbol L.ιM. In this section, A denotes a formula over ΣCAωr =
ΣPAωr with free variables among xι, yσ, zσ, ~u~τ . For clarity, we write A {t, u, v} instead of
A {t/x, u/y, v/z}. The axioms of CAωr are those of PAωr plus the following version of
dependent choice:

(DCr) ∀~u~τ
(
∀rxι ∀ryσ

(
∀zσ ¬A {x, y, z} ⇒ ∀x′ιA

{
x′, y, y

})
⇒ ∃vι→σ ∀rxιA {x, v x, v (Sx)}

)

24 VALENTIN BLOT

where A {x, y, z} is of the shape LzM ∧ C. The formula A in (DCr) sould be understood as
an abbreviation, and the axiom is schematic in C. This version is quite different from (DC)r

which is:

∀r~u~τ (∀rxι ∀ryσ ∃rzσ Br {x, y, z} ⇒ ∃rvι→σ ∀rxιBr {x, v x, v (Sx)})

where B is a formula over ΣCAω = ΣPAω with free variables among xι, yσ, zσ, ~u~τ , for which
we use again the notation Br {t, u, v}. First, some quantifications have been unrelativized,
but another important difference is that we replaced ⊥ with ∀x′A {x′, y, y}. This change is
in the spirit of [EO12] and will allow an easier realizability interpretation in section 3.3.3. In
order to use lemma 3.2, we need to prove that (DC)r is derivable in CAωr. We will actually
prove that the instance of (DCr) with:

A {x, y, z} ≡ LzM ∧ LyM ∧Br {x, y, z}

implies (DC)r in first-order logic. This is indeed an instance of (DCr) since A is of the shape
LzM ∧ C. Since ∀~uC⇒∀r~uC is derivable, it is sufficient to prove the following lemma:

Lemma 3.8. The following formula over the signature ΣPAωr = ΣCAωr :

∀rx∀ry
(
∀z ¬A {x, y, z} ⇒ ∀x′A

{
x′, y, y

})
⇒ ∀v¬∀rxA {x, v x, v (Sx)} ⇒ ⊥

⇒

∀rx∀ry ∃rz Br {x, y, z} ⇒ ∀rv ¬∀rxBr {x, v x, v (Sx)} ⇒ ⊥

where A {x, y, z} ≡ LzM∧LyM∧Br {x, y, z}, is provable in the logical system with relativization
defined in section 3.1.

Proof. We do this by proving the following two sequents:

∀rx∀ry ∃rz Br {x, y, z} ⊢∀rx∀ry
(
∀z ¬A {x, y, z} ⇒ ∀x′A

{
x′, y, y

})

∀rv¬∀rxBr {x, v x, v (Sx)} ⊢∀v¬∀rxA {x, v x, v (Sx)}

• For the first one, we suppose ∀rx∀ry ∃rz Br {x, y, z}, LxM, LyM and ∀z ¬A {x, y, z}, and we
want to prove LyM ∧ LyM ∧ Br {x′, y, y}. LyM is an hypothesis and we deduce Br {x′, y, y}
from ⊥ (which is valid since Br {x′, y, y} is a negative formula by lemma 3.1 and therefore
⊥⇒ Br {x′, y, y} is derivable) by applying the hypothesis ∀rx∀ry (∀rz ¬Br {x, y, z} ⇒ ⊥)
with LxM and LyM, so the only thing left to prove is ∀rz¬Br {x, y, z}. We derive it from
∀z¬A {x, y, z} and LyM, which amounts to proving the following sequent:

∀z ((LzM ∧ LyM ∧Br {x, y, z})⇒⊥) , LyM ⊢ ∀z (LzM ⇒Br {x, y, z} ⇒⊥)

which is immediate
• The second sequent can be rewritten as:

∀v (LvM ⇒∀rxBr {x, v x, v (Sx)} ⇒⊥) ⊢ ∀v (∀rxA {x, v x, v (Sx)}⇒⊥)

Therefore, it is sufficient to prove:

∀rxA {x, v x, v (Sx)} ⊢ LvM ∧ ∀rxBr {x, v x, v (Sx)}

which is after unfolding some definitions:

∀rx (Lv (Sx)M ∧ Lv xM ∧Br {x, v x, v (Sx)}) ⊢ ∀rx Lv xM ∧ ∀rxBr {x, v x, v (Sx)}

and this sequent is indeed provable in our logical system.

TYPED REALIZABILITY FOR FIRST-ORDER CLASSICAL ANALYSIS 25

Thanks to this lemma, we can now apply lemma 3.2 to get for any A on the signature ΣCAω :

CAω |∼ A =⇒ CAωr |∼ Ar

3.1.4. Interpreting the axiom of choice with bar recursion. Bar recursion is an operator which
can be seen as recursion on well-founded trees. It was first introduced by Spector in [Spe62]
to extend Gödel’s Dialectica interpretation to Heyting arithmetic augmented with the axiom
of countable choice. This operator was studied in [Koh90], and a more uniform operator
which is very similar to bar recursion was introduced in [BBC98] and used in a realizability
setting. A version in which the well-foundedness of trees is implicit was proposed in [BO05]
under the name of modified bar recursion, and we use this version here. For a comparison
between these different forms of bar recursion and other similar principles we refer the reader
to [Pow13, Pow14].

In this section, we first encode lists and list operators in µPCF. Then we define the
modified bar recursion operator of [BO05] that we will use to provide our computational
interpretation of the axiom of dependent choice.

Encoding lists in µPCF. In order to define bar recursion, we first need to encode lists and
operations on lists in µPCF. We choose to represent a list by a natural number (the size of
the list) together with a (partial) function on natural numbers. We define the type of lists
and notations for the size of a list, the empty list, and the access to a particular element:

T ⋄ ∆
= I × (I → T) |M |

∆
= π1M ǫ

∆
=
〈
0, λx.Ω

〉
M ⇂N⇃

∆
= π2M N

If M : T ⋄ and N : I, then it is easy to prove:

|M | : I ǫ : T ⋄ |ǫ| = 0 M ⇂N⇃: T ǫ ⇂N⇃= Ω

In order to define extensions of lists, we need subtraction on natural numbers sub : I → I → I
and tests of equality if= : I → I → T → T → T and strict ordering if< : I → I → T →
T → T , which we can define in µPCF. These operators satisfy the following equations for
m,n ∈ N:

submn =

{
m− n if n ≤ m

0 otherwise
if=mnM N =

{
M if m = n

N otherwise
if<mnM N =

{
M if m < n

N otherwise

We are now able to define the extension of a list by a single element:

M ∗N
∆
= 〈succ |M | , λx.if= x |M |N (M ⇂x⇃)〉

as expected, if M : T ⋄ and N : T then M ∗ N : T ⋄, |M ∗N | = succ |M | and (M ∗N) ⇂
|M |⇃= N . Finally, we define infinite extension of a list with a constant element:

M @N
∆
= λx.if< x |M | (M ⇂x⇃)N

We can derive from M : T ⋄ and N : T that M @N : I → T and:

(M0 ∗M1 ∗ ... ∗Mn−1 @N) ⇂m⇃=

{
Mm if m < n

N otherwise

26 VALENTIN BLOT

The bar recursion operator. We have now all necessary material to define formally the bar
recursion operator:

barrec
∆
= λuv.Y (λzy.v (y @ (u y (λx.z (y ∗ x)))))

Bar recursor can be typed as expected:

barrec : (T ⋄ → (T → U) → T) → ((I → T) → U) → T ⋄ → U

And it verifies indeed the equation:

barrecM N P = N (P @M P (λx.barrecM N (P ∗ x)))

Interpreting dependent choice using bar recursion. We use here the bar-recursion operator
to provide the term M(DCr) interpreting the axiom of dependent choice. Remember that
(DCr) is:

∀~u~τ
(
∀rxι ∀ryσ

(
∀zσ ¬A {x, y, z} ⇒ ∀x′ιA

{
x′, y, y

})
⇒ ∃vι→σ ∀rxιA {x, v x, v (Sx)}

)

where A is a formula over ΣCAωr = ΣPAωr with free variables among xι, yσ, zσ, ~u~τ and
which is of the shape LzM ∧ C. As in the previous section, we write A {t, u, v} instead of
A {t/x, u/y, v/z}. The type of M(DCr), (DCr)∗ is:

M(DCr) : (I → T → (A∗ → 0) → A∗) → ((I → A∗) → 0) → 0

In order to define M(DCr) we make an informal reasoning. Suppose M : ι → T →
(A∗ → 0) → A∗ is a witness of:

∀rxι∀ryσ
(
∀zσ¬A {x, y, z} ⇒ ∀x′ιA

{
x′, y, y

})

and N : (I → A∗) → 0 is a witness of:

∀vι→σ¬∀rxιA {x, v x, v (Sx)}

We want to build from this, using barrec, a witness of ⊥. We will use the following instance
of barrec:

barrec : (A∗⋄ → (A∗ → 0) → A∗) → ((I → A∗) → 0) → A∗⋄ → 0

The idea now is that barrec will build a sequence of witnesses of A {x, v x, v (Sx)}. The first
argument represents the recursive step. If we have an element w : A⋄ which represents the
sequence of witnesses already computed, then M computes the next element of w, given its
length and last element. Here we have two cases, the first one is when |w| = 0, so we must
initialize the sequence with an element of type L.σM∗ that we can choose arbitrarily. Since σ
is a sort of the logic, we can write it as σ1 → ...→ σn → ι so:

L.σM∗ = L.σ1M∗ → ...→ L.σnM∗ → I

and we define this arbitrary element to be λx1...xn.0. In the following, we will simply
write this term as 0, leaving the type implicit. In the second case, the last element of w is
w ⇂pred |w|⇃. Therefore, we provide M with |w| and if0 |w| 0 (π1 w ⇂pred |w|⇃). The π1 is
because the last element of w is a witness of A {n− 2, v (n− 2) , v (n− 1)} where n is the
length of w, so since A is of shape LzM ∧ C, π1 w ⇂pred |w|⇃ is a witness of Lv (n− 1)M. The
first argument is then:

λw.M |w|
(
if0 |w| 0 (π1 w ⇂pred |w|⇃)

)

TYPED REALIZABILITY FOR FIRST-ORDER CLASSICAL ANALYSIS 27

The second argument represents the behavior if we have an infinite sequence of witnesses
w : I → B. In that case we simply provide N with this argument w, so the third argument
is just N . Finally, the last argument of barrec is the initial sequence of witnesses, that is the
empty sequence ǫ. We have then:

barrec
(
λw.M |w|

(
if0 |w| 0 (π1w ⇂pred |w|⇃)

))
N ǫ : 0

The interpretation of (DCr) is therefore defined as:

M(DCr)
∆
= λxy.barrec

(
λv.x |v|

(
if0 |v| 0 (π1 v ⇂pred |v|⇃)

))
y ǫ

3.2. The realizability relation.

3.2.1. Negative translation and orthogonality. The first realizability models for classical
logic were obtained by combining Gödel’s negative translation with intuitionistic realiz-
ability [BBC98, BO05, Koh08]. Gödel’s negative translation from Peano arithmetic PAω

=

(equivalent to PAω) to HAω
= (see section 1.3.1) maps a formula A to A¬ by prefixing induc-

tively all the positive connectives and atomic predicates of A with a double negation. It
holds that if PAω

= |∼ A, then HAω
= |∼ A¬, and the proof of this relies on the fact that for

every axiom A of PAω
=, HAω

= |∼ A⇒ A¬. Therefore, a realizability model for PAω
= can be

obtained from a realizability model for HAω
= using Gödel’s negative translation. Concerning

the extraction of witnesses, if PAω
= |∼ ∃xι (t = 0), then HAω

= |∼ ¬¬∃xι¬¬ (t = 0) from which
we easily get HAω

= |∼ ¬¬∃xι (t = 0). While in usual intuitionistic realizability the formula ⊥
has no realizer so the model is sound, Friedman’s trick is to allow ⊥ to have realizers. If we
then take the realizers of ⊥ to be the same as those of ∃xι (t = 0), then combining the proof
of ¬¬∃xι (t = 0) with the identity gives a realizer of ∃xι (t = 0), and therefore the witness.

In Krivine’s [Kri09] classical realizability models this double step (negative translation +
intuitionistic realizability) is avoided through the use of orthogonality in system F. In these
models there is a set of terms Λ and a set of stacks Π. Each formula has a set of realizers
(the truth value, subset of Λ) and a set of counter-realizers (the falsity value, subset of Π).
The falsity values are primitive, an orthogonality relation is defined between Λ and Π, and
the truth values are defined as the orthogonals of the falsity values, so they are orthogonally
closed.

Here we work in a typed setting so we must choose the types of realizers and counter-
realizers so they can interact. Given a formula A, the set of realizers of A would normally
be a set of morphisms in a category of continuations RC from the terminal object 1 to the
interpretation of A: [A∗] = RJA∗K, and under the duality between terms and contexts of
λµ-calculus, a natural choice for the counter-realizers of A is a set of morphisms in C from
1 to JA∗K. Then we can combine a potential realizer of A with a potential counter-realizer

using the evaluation morphism ev : RJA∗K×JA∗K → R so we obtain a morphism from 1 to R.
The potential realizer and counter-realizer are orthogonal to each other or not, depending on
the result. Therefore, in order to define a non-trivial orthogonality relation, there must be
at least two morphisms from 1 to R, and if we want to perform extraction this homset has
to be isomorphic to the set of values we want to extract. In realizability for arithmetic, this
is usually done by choosing an object R which is the same as the interpretation of natural
numbers, however this choice has some drawbacks. Indeed, some computational models
can be naturally seen as categories of continuations for a given R, and this R may not be

28 VALENTIN BLOT

isomorphic to the object of natural numbers. Take for example the model of Hyland-Ong
games [HO00]. We know that by relaxing the well-bracketing condition we obtain a fully
abstract model of µPCF [Lai97]. It is therefore not a surprise that the same game model
is a category of continuations RC , and it turns out that in this category of continuations,
the object R is the one-move arena. The key point for this is that the arena of natural
numbers is the exponential of the one-move arena by the countable product of one-move
arenas, details can be found in [Blo14], section 4.4. But since there is only one strategy on
the one-move arena (the empty strategy), we cannot easily define a non-trivial orthogonality
relation.

Therefore we choose here a different approach and rely on Friedman’s trick directly in
the definition of the realizability relation: our orthogonality relation relies on an artificially
added output channel. Formally we add a µ-variable in the process of interpreting logic in
λµ-calculus. A proof:

p

A1, ..., An ⊢ A | B−
1 , ..., B

−
m

is now translated to a λµ-term:

x1 : A1
∗, ..., xn : An

∗ ⊢ p
∗ : A∗ | α1 : B1

∗, ..., αn : Bm
∗, κ : Z

where Z is some fixed base type, by applying the (admissible) rule of right weakening of
λµ-calculus. The µ-variable κ is, intuitively, a continuation variable which can be used by a
realizer or a counter-realizer to stop computation and give an answer. Apart from its use in
the definition of the realizability relation, this feature will also be used in the proof of the
extraction result, for which Z will be instantiated with the type of natural numbers. After
translating the proof p to a λµ-term p∗, we interpret it in RC as a morphism:

p
∗ ∈ RC ([A1

∗]× ...× [An
∗], [A∗]` [B1

∗]` ...` [Bm
∗]` [Z])

In the particular case of empty contexts, p∗ is a morphism in RC (1, [A∗]` [Z]), and we
therefore choose the potential realizers of a closed formula A to be such morphisms. Similarly
we choose the potential counter-realizers of A to be morphisms in C (JZK, JA∗K). As explained
in section 2.2.2 and by taking the convention that the potential realizers have a free µ-variable
κ of type Z, we use the syntax of λµ-calculus (and possibly [κ] and µκ) to manipulate
these. We also substitute morphisms of C for µ-variables, as in section 2.2.4, so if φ ∈
RC (1, [A∗]` [Z]) is a potential realizer, and if ж ∈ C (JZK, JA∗K) is a potential counter-

realizer, then [ж] φ ∈ RC (1, [0]` [Z]), since [A∗] = RJA∗K and [0] = R, and therefore
µκ. [ж] φ ∈ RC (1, [Z]). Since the object [Z] = RJZK can (and will) be chosen larger than
[0] = R, we can now define when ж is orthogonal to φ depending on µκ. [ж] φ. Typically, in
the model of unbracketed games, R is the one-move arena and JZK is the countable product

of the one-move arena, so [Z] = RJZK is indeed the usual arena of natural numbers.
The choice of having a separate µ-variable instead of choosing a big enough object R

can also provide a simpler interpretation of proofs in RC . We give a comparison of our
interpretation of the identity proof of ⊥⇒⊥ in arithmetic with the usual interpretation in
figure 14, where we take RC to be the unbracketed games model. We can see that with the
usual interpretation where R is the object of natural numbers, this proof is interpreted as a
strategy from natural numbers to natural numbers. However, in our interpretation the same

proof is interpreted as a strategy on the arena [0][0] ` [Z] where [0] is the one-move arena
and [Z] is the arena of natural numbers (indeed, the ` operation on arenas is the merge of
roots). This simplification doesn’t happen in every model however. For example, in Scott

TYPED REALIZABILITY FOR FIRST-ORDER CLASSICAL ANALYSIS 29

usual interpretation: our interpretation:

arena:

q

q′

♦♦♦♦♦♦♦♦♦♦♦
0

⑧⑧⑧⑧⑧⑧
1

✎✎✎✎
... n

✴✴✴✴

...

0′

⑧⑧⑧⑧⑧
1′

✎✎✎

... n′

✴✴✴

...

q

q′

♦♦♦♦♦♦♦♦♦♦♦
01

⑧⑧⑧⑧⑧
11

✎✎✎✎
... n1

✴✴✴✴

...

views of the strategy: {ǫ; qq′} ∪ {qq′mm′ | m ∈ N} {ǫ; qq′}

Figure 14: Comparison of our interpretation with the usual one

domains, the natural choice of taking the singleton set for R leads to a degenerated model,
since RA is then isomorphic to R for any domain A. In order to get a non-degenerated
model, we would need to choose for R a bigger domain, and therefore we would lose the
benefit of our simpler interpretation.

In [BR13] the goals of orthogonally-defined realizability and extraction were achieved
similarly by taking realizers of a formula A to be interpretations of closed terms of type
JZK → [A∗], but also interpreting the atomic formulas and ⊥ with the base type Z instead
of the empty type 0, which led to unnecessary complex types for the realizers.

To summarize, in order to have the benefit of the simpler interpretation, our categorical
model RC needs to have an object R which is significantly simpler than [Z] = RJZK, and
[Z] should be large enough to interpret natural numbers. This rules out Scott domains,
but unbracketed games models do have this property. It would be interesting to find other
examples of such models, the main candidates being Laird’s bistable biorders [Lai07] and
Berry and Curien’s sequential algorithms [BC82], which are both fully abstract models of
µPCF.

3.2.2. Truth values, falsity values. We fix a first-order signature Σ and a Σ-structure M.
We also fix a corresponding λµ signature and a type P ∗ in this signature for each positive
predicate P of Σ, as in section 2.1.2. We interpret λµ-calculus in a category of continuations
RC as in section 2.2.2 and we use the syntax of λµ-calculus to describe strategies of RC , so
we omit the interpretation brackets. All the λµ-terms that we write from now on are to be
understood as morphisms in RC .

In order to build our realizability relation by orthogonality, and later on to perform
extraction on Π0

2 formulas using Friedman’s trick, our model is parameterized with a set

⊥⊥ ⊆ RC (1, [Z])

which is, intuitively, the set of “correct” values that can be output through the variable κ.
We now define the set of realizers of a formula, that we call its truth value. We fix for

each positive predicate P of Σ and each a1, ..., an ∈ σ1
M × ... × σn

M a set of morphisms
|P (a1, ..., an)| ⊆ RC (1, [P ∗]` [Z]). The extension of this to every closed formula A on
Σ with parameters in M is given in Figure 15, so |A| ⊆ RC (1, [A∗]` [Z]). Remark that
contrary to [Kri09], we do not define the truth values as the orthogonals of the falsity values.
In our logical system, only some predicates are negative, and therefore only some formulas
are negative. In the realizability interpretation, only the negative formulas are given a falsity

30 VALENTIN BLOT

|A⇒B| = {φ | ∀ψ ∈ |A| , φ ψ ∈ |B|} |∀xσ A| =
⋂

a∈σM

|A {a/x}|

|A ∧B| = {φ | π1 φ ∈ |A| ∧ π2 φ ∈ |B|} |⊥| = {φ | µκ.φ ∈ ⊥⊥}

∣∣P− (a1, ..., an)
∣∣ =

{
RC (1, [0]` [Z]) if M � P− (a1, ..., an)

{φ | µκ.φ ∈ ⊥⊥} otherwise

Figure 15: Truth values

∥∥A⇒B−
∥∥ =

{〈
φ̃,ж

〉 ∣∣ φ ∈ |A| ∧ ж ∈
∥∥B−

∥∥} ∥∥∀xσ A−
∥∥ =

⋃

a∈σM

∥∥A− {a/x}
∥∥

∥∥A− ∧B−
∥∥ =

{
in1 ж

∣∣
ж ∈

∥∥A−
∥∥} ∪

{
in2 ж

∣∣
ж ∈

∥∥B−
∥∥} ‖⊥‖ = {∗}

∥∥P− (a1, ..., an)
∥∥ =

{
∅ if M � P− (a1, ..., an)

{∗} otherwise

Figure 16: Falsity values

value and their truth values will be proved to be orthogonal to their falsity values. For the
other formulas the truth value is primitive and may not be bi-orthogonally closed.

For every closed negative formula A− with parameters in M the falsity value of A− is
given in Figure 16, so ‖A−‖ ⊆ C (JZK, JA∗K). As explained in section 2.2.3, we use here the
syntax of λR×+ to manipulate morphisms in C. We define now an orthogonality relation
between RC (1, [A∗]` [Z]) and C (JZK, JA∗K): if φ ∈ RC (1, [A∗]` [Z]) and ж ∈ C (JZK, JA∗K),
then µκ. [ж] φ ∈ RC (1, [Z]), so we define:

φ ⊥ ж

∆
= µκ. [ж] φ ∈ ⊥⊥

The following lemma states that the truth values are indeed the orthogonals of the falsity
values defined above for negative formulas:

Lemma 3.9. For every closed negative formula A− with parameters in M:
∣∣A−

∣∣ =
{
φ
∣∣ ∀ж ∈

∥∥A−
∥∥ , φ ⊥ ж

}

Proof. We prove this result by induction on the structure of the formula:

• ⊥: if φ ∈ RC (1, [⊥∗]` [Z]) then:

φ ∈ |⊥| ⇔ µκ.φ ∈ ⊥⊥ ⇔ µκ. [∗] φ ∈ ⊥⊥ ⇔ φ ⊥ ∗

from which we conclude since ‖⊥‖ = {∗}.
• P− (a1, ..., an): if M � P− (a1, ..., an) then the result is immediate, and otherwise the

proof is the same as for ⊥.
• A− ∧B−: if φ ∈ RC (1, ([A∗]× [B∗])` [Z]), ж1 ∈ C (JZK, JA∗K), ж2 ∈ C (JZK, JB∗K), then
µκ. [ini жi] φ = µκ. [жi] πi φ, therefore:

πi φ ⊥ жi ⇔ µκ. [жi] πi φ ∈ ⊥⊥ ⇔ µκ. [ini жi] φ ∈ ⊥⊥ ⇔ φ ⊥ ini жi

TYPED REALIZABILITY FOR FIRST-ORDER CLASSICAL ANALYSIS 31

and finally:

σ ∈
∣∣A− ∧B−

∣∣⇔
{
π1 φ ∈

∣∣A−
∣∣

π2 φ ∈
∣∣B−

∣∣

⇔

{
∀ж1 ∈

∥∥A−
∥∥ , π1 φ ⊥ ж1

∀ж2 ∈
∥∥B−

∥∥ , π2 φ ⊥ ж2

by induction hypothesis

⇔

{
∀ж1 ∈

∥∥A−
∥∥ , φ ⊥ in1 ж1

∀ж2 ∈
∥∥B−

∥∥ , φ ⊥ in2 ж2

⇔ ∀ж ∈
∥∥A− ∧B−

∥∥ , φ ⊥ ж

• A⇒B−: if φ ∈ RC
(
1, [B∗][A

∗] ` [Z]
)
, ψ ∈ RC (1, [A∗]` [Z]) and ж ∈ C (JZK, JB∗K), then

µκ.
[〈
ψ̃,ж

〉]
φ = [ж] φψ, therefore:

φψ ⊥ ж ⇔ µκ. [ж] φψ ∈ ⊥⊥ ⇔ µκ.
[〈
ψ̃,ж

〉]
φ ∈ ⊥⊥ ⇔ φ ⊥

〈
ψ̃,ж

〉

and finally:

φ ∈
∣∣A⇒B−

∣∣⇔ ∀ψ ∈ |A| , φ ψ ∈
∣∣B−

∣∣

⇔ ∀ψ ∈ |A| ,∀ж ∈
∥∥B−

∥∥ , φ ψ ⊥ ж by induction hypothesis

⇔ ∀ψ ∈ |A| ,∀a ∈
∥∥B−

∥∥ , φ ⊥
〈
ψ̃, a

〉

⇔ ∀ж
′ ∈
∥∥A⇒B−

∥∥ , ψ ⊥ ж
′

• ∀xσ A−: if φ ∈ RC (1, [A∗]` [Z]), then:

φ ∈
∣∣∀xσ A−

∣∣⇔ ∀a ∈ σM, φ ∈
∣∣A− {a/x}

∣∣

⇔ ∀a ∈ σM,∀ж ∈
∥∥A− {a/x}

∥∥ , φ ⊥ ж

⇔ ∀ж ∈ C (JZK, JA∗K) ,
(
∃a ∈ σM,ж ∈

∥∥A− {a/x}
∥∥)⇒ φ ⊥ ж

⇔ ∀ж ∈
∥∥∀xσ A−

∥∥ , φ ⊥ ж

3.3. Adequacy.

3.3.1. Adequacy for first-order logic. We will now state the adequacy lemma, which states
the soundness of our realizability interpretation with respect to first-order classical logic. It
is interesting to remark that the only cases which depends on the orthogonality relation are
those of introduction and elimination of the ⊥ formula. It is not much of a surprise, since
these rules are the ones that make our proof system classical. Most of the other cases are
straightforward, though some care must be taken for the ∀ rules.

In order to prove the adequacy lemma, we suppose that the interpretations of the terms
associated to the axioms are realizers of these axioms: for every A ∈ Ax, MA ∈ |A|. The
adequacy lemma is then as follows:

Lemma 3.10. Suppose p is a proof of Γ ⊢ A | ∆− with FV (Γ, A,∆) ⊆ ~y~σ, so:

~x : Γ∗ ⊢ p
∗ : A∗ | ~α : ∆∗, κ : Z

32 VALENTIN BLOT

then for any ~a ∈ ~σM, ~φ ∈ |Γ {~a/~y}| , ~ж ∈ ‖∆− {~a/~y}‖, we have:

p
∗
{
~φ/~x, ~ж/~α

}
∈ |A {~a/~y}|

In particular if A is a closed formula, p∗ ∈ |A|

Proof. By induction on the proof tree:

• If p is the identity rule then p∗ is:

~x : Γ∗, z : A∗ ⊢ z : A∗ | ~α : ∆∗, κ : Z

Let ~a ∈ ~σM, ~φ ∈ |Γ {~a/~y}|, ψ ∈ |A {~a/~y}| and ~ж ∈ ‖∆− {~a/~y}‖. Then we have:

p
∗
{
~φ/~x, ψ/z, ~ж/~α

}
= ψ ∈ |A {~a/~y}|

• If p is the axiom rule then p∗ is:

~x : Γ∗ ⊢MA : A∗ | ~α : ∆∗, κ : Z

Let ~a ∈ ~σM, ~φ ∈ |Γ {~a/~y}| and ~ж ∈ ‖∆− {~a/~y}‖. Then we have:

p
∗
{
~φ/~x, ~ж/~α

}
=MA ∈ |A| = |A {~a/~y}|

since A is closed and MA ∈ |A| by assumption.
• If p ends with an introduction of ⇒ then p∗ is:

~x : Γ∗, x : A∗ ⊢ q∗ : B∗ | ~α : ∆∗, κ : Z

~x : Γ∗ ⊢ λx.q∗ : A∗ → B∗ | ~α : ∆∗, κ : Z

Let ~a ∈ ~σM, ~φ ∈ |Γ {~a/~y}| and ~ж ∈ ‖∆− {~a/~y}‖. Then for any ψ ∈ |A {~a/~y}| we have:
(
p
∗
{
~φ/~x, ~ж/~α

})
ψ = q

∗
{
~φ/~x, ψ/y, ~ж/~α

}
∈ |B {~a/~y}|

by induction hypothesis, since ψ ∈ |A {~a/~y}|. Therefore:

p
∗
{
~φ/~x, ~ж/~α

}
∈ |(A⇒B) {~a/~y}|

• If p ends with an elimination of ⇒ then p∗ is:

~x : Γ∗ ⊢ q∗ : A∗ → B∗ | ~α : ∆∗, κ : Z ~x : Γ∗ ⊢ r∗ : A∗ | ~α : ∆∗, κ : Z

~x : Γ∗ ⊢ q∗r∗ : B∗ | ~α : ∆∗, κ : Z

Let ~a ∈ ~σM, ~φ ∈ |Γ {~a/~y}| and ~ж ∈ ‖∆− {~a/~y}‖. Then we have:

p
∗
{
~φ/~x, ~ж/~α

}
=
(
q
∗
{
~φ/~x, ~ж/~α

})(
r
∗
{
~φ/~x, ~ж/~α

})
∈ |B {~a/~y}|

since by induction hypothesis:

q
∗
{
~φ/~x, ~ж/~α

}
∈ |(A⇒B) {~a/~y}| and r

∗
{
~φ/~x, ~ж/~α

}
∈ |A {~a/~y}|

• If p ends with an introduction of ∧ then p∗ is:

~x : Γ∗ ⊢ q∗ : A∗ | ~α : ∆∗, κ : Z ~x : Γ∗ ⊢ r∗ : B∗ | ~α : ∆∗, κ : Z

~x : Γ∗ ⊢ 〈q∗, r∗〉 : A∗ ×B∗ | ~α : ∆∗, κ : Z

Let ~a ∈ ~σM, ~φ ∈ |Γ {~a/~y}| and ~ж ∈ ‖∆− {~a/~y}‖. Then we have:

p
∗
{
~φ/~x, ~ж/~α

}
=
〈
q
∗
{
~φ/~x, ~ж/~α

}
, r∗
{
~φ/~x, ~ж/~α

}〉
∈ |(A ∧B) {~a/~y}|

TYPED REALIZABILITY FOR FIRST-ORDER CLASSICAL ANALYSIS 33

since by induction hypothesis:

q
∗
{
~φ/~x, ~ж/~α

}
∈ |A {~a/~y}| and r

∗
{
~φ/~x, ~ж/~α

}
∈ |B {~a/~y}|

• If p ends with an elimination of ∧ then p∗ is:

~x : Γ∗ ⊢ q∗ : A∗
1 ×A∗

2 | ~α : ∆∗, κ : Z

~x : Γ∗ ⊢ πi q
∗ : A∗

i | ~α : ∆∗, κ : Z

Let ~a ∈ ~σM, ~φ ∈ |Γ {~a/~y}| and ~ж ∈ ‖∆− {~a/~y}‖. Then we have:

p
∗
{
~φ/~x, ~ж/~α

}
= πi

(
q
∗
{
~φ/~x, ~ж/~α

})
∈ |Ai {~a/~y}|

since by induction hypothesis:

q
∗
{
~φ/~x, ~ж/~α

}
∈ |(A1 ∧A2) {~a/~y}|

• If p ends with an introduction of ∀ then p∗ is:

~x : Γ∗ ⊢ q
∗ : (∀zτA)∗ | ~α : ∆∗, κ : Z = ~x : Γ∗ ⊢ q

∗ : A∗ | ~α : ∆∗, κ : Z

Let ~a ∈ ~σM, ~φ ∈ |Γ {~a/~y}| and ~ж ∈ ‖∆− {~a/~y}‖. Then for any b ∈ τM, ~φ ∈ |Γ {~a/~y, b/z}|
and ~ж ∈ ‖∆− {~a/~y, b/z}‖ (since zτ /∈ FV (Γ,∆)), so by induction hypothesis:

q
∗
{
~φ/~x, ~ж/~α

}
∈ |A {~a/~y, b/z}|

Therefore p∗
{
~φ/~x, ~ж/~α

}
∈ |(∀zτ A) {~a/~y}|.

• If p ends with an elimination of ∀ then p∗ is:

~x : Γ∗ ⊢ q
∗ : (A {tτ/zτ})∗ | ~α : ∆∗, κ : Z = ~x : Γ∗ ⊢ q

∗ : (∀zτA)∗ | ~α : ∆∗, κ : Z

Let ~a ∈ ~σM, ~φ ∈ |Γ {~a/~y}| and ~ж ∈ ‖∆− {~a/~y}‖. By induction hypothesis:

q
∗
{
~φ/~x, ~ж/~α

}
∈
⋂

b∈τM

|A {~a/~y, b/z}|

so taking b = (t {~a/~y})M ∈ τM we get:

q
∗
{
~φ/~x, ~ж/~α

}
∈
∣∣∣A
{
~a/~y, (t {~a/~y})M/z

}∣∣∣

and since p∗ = q∗ and A
{
~a/~y, (t {~a/~y})M/z

}
= A {t/z} {~a/~y} we get:

p
∗
{
~φ/~x, ~ж/~α

}
∈ |A {t/z} {~a/~y}|

• If p ends with an introduction of ⊥ then p∗ is:

~x : Γ∗ ⊢ q∗ : A∗ | β : A∗, ~α : ∆∗, κ : Z

~x : Γ∗ ⊢ [β]q∗ : 0 | β : A∗, ~α : ∆∗, κ : Z

Let ~a ∈ ~σM, ~φ ∈ |Γ {~a/~y}|, ~ж ∈ ‖∆− {~a/~y}‖ and и ∈ ‖A− {~a/~y}‖. Then we have:

p
∗
{
~φ/~x, ~ж/~α,и/β

}
= ([β] q∗)

{
~φ/~x, ~ж/~α,и/β

}

= [и]
(
q
∗
{
~φ/~x, ~ж/~α,и/β

})
∈ |⊥| = |⊥ {~a/~y}|

34 VALENTIN BLOT

since by induction hypothesis:

q
∗
{
~φ/~x, ~ж/~α,и/β

}
∈
∣∣A− {~a/~y}

∣∣

so q∗
{
~φ/~x, ~ж/~α,и/β

}
⊥ и by lemma 3.9, and µκ. [и]

(
q∗
{
~φ/~x, ~ж/~α,и/β

})
∈ ⊥⊥.

• If p ends with an elimination of ⊥ then p∗ is:

~x : Γ∗ ⊢ q∗ : 0 | β : A∗, ~α : ∆∗, κ : Z

~x : Γ∗ ⊢ µβ.q∗ : A∗ | ~α : ∆∗, κ : Z

Let ~a ∈ ~σM, ~φ ∈ |Γ {~a/~y}| and ~ж ∈ ‖∆− {~a/~y}‖. Then for any и ∈ ‖A− {~a/~y}‖ we have:

µκ. [и]
(
p
∗
{
~φ/~x, ~ж/~α

})
= µκ.

(
[и] µβ.q∗

{
~φ/~x, ~ж/~α

})

= µκ.
(
q
∗
{
~φ/~x, ~ж/~α,и/β

})
∈ ⊥⊥

since by induction hypothesis, q∗
{
~φ/~x, ~ж/~α,и/β

}
∈ |⊥ {~a/~y}| = |⊥|. Therefore:

p
∗
{
~φ/~x, ~ж/~α

}
⊥ и

and so by lemma 3.9:

p
∗
{
~φ/~x, ~ж/~α

}
∈
∣∣A− {~a/~y}

∣∣

3.3.2. Adequacy for Peano arithmetic. We fix now the theory to be PAωr on ΣPAωr (the
inequality predicate being negative, and the relativization predicate being positive), and the
structure M to be a model of PAω, the inequality predicate being interpreted in M as in

section 1.5. For simplicity we write n for (Sn 0)M where n ∈ N. The λµ signature is that of
µPCF (see section 2.1.4) and we interpret the two predicates as in sections 3.1 and 3.1.2:

6=σ
∗ ∆

= 0 L.ιM∗ ∆
= I

and the axioms as in section 3.1.2. We suppose that the category of continuations RC is a
model of µPCF (see definition 2.8). Since we want to extract algorithms on natural numbers,
we fix Z = I.

The realizability value for the relativization predicate is:

|La : ιM| ∆
=

{
{n} if a = n for some n ∈ N

∅ otherwise

First, all equalities which are true in the model are trivially realized:

Lemma 3.11. Let tσ and uσ be first-order terms with FV (t, u) = ~x~τ .

If M � ∀~x~τ (t = u) then λx.x ∈
∣∣∣∀~x~τ (t = u)

∣∣∣

Proof. Let ~a ∈ ~τM. Since M � ∀~x~τ (t = u), we have (t {~a/~x})M = (u {~a/~x})M, so:

|t {~a/~x} 6= u {~a/~x}| = |⊥|

Therefore, for any φ ∈ |t {~a/~x} 6= u {~a/~x}|:

(λx.x)φ = φ ∈ |t {~a/~x} 6= u {~a/~x}| = |⊥|

TYPED REALIZABILITY FOR FIRST-ORDER CLASSICAL ANALYSIS 35

and so:
λx.x ∈

∣∣∣∀~x~τ (t 6= u⇒⊥)
∣∣∣ =

∣∣∣∀~x~τ (t = u)
∣∣∣

Therefore, since M is a model of PAω we have immediately the following results:

M(refl) = λx.x ∈ |∀xσ (x =σ x)|

M(∆s) = λx.x ∈ |∀xσ→τ→ν∀yσ→τ∀zσ (sx y z =ν x z (y z))|

M(∆k) = λx.x ∈ |∀xσ∀yτ (kx y =σ x)|

M(∆rec0) = λx.x ∈ |∀xσ∀yι→σ→σ (rec x y 0 =σ x)|

M(∆recS) = λx.x ∈ |∀xσ∀yι→σ→σ∀zι (rec x y (S z) =σ y z (rec x y z))|

The non-confusion axiom and Leibniz scheme are easy:

Lemma 3.12.

M(Snz) = Ω ∈ |∀xι (Sx 6=ι 0)|

M(Leib) = λx.x ∈
∣∣∣∀~z~τ ∀xσ ∀yσ (¬A⇒A {y/x} ⇒ x 6=σ y)

∣∣∣

Proof. Since |LaM| = ∅ if a /∈ N, it is sufficient to prove that for any n ∈ N, Ω ∈ |n+ 1 6= 0|,
which is true since M � (Snz) so |n+ 1 6= 0| = RC (1, [0]` [I]). Let now ~a ∈ ~τM, b, c ∈ σM,
φ ∈ |¬A {b/x,~a/~z}| and ψ ∈ |A {c/x,~a/~z}|. If b 6= c, then |b 6= c| = RC (1, [0]` [I]) and
therefore (λx.x)φψ ∈ |b 6= c|. Otherwise, b = c so |A {b/x,~a/~z}| = |A {c/x,~a/~z}| and by
definition of |A⇒B| we get φψ ∈ |⊥|. Moreover, since b = c, |b 6= c| = |⊥| and φψ ∈ |b 6= c|.
Finally we get M(Leib) ∈

∣∣∀~z~τ ∀xσ ∀yσ (¬A⇒A {y/x} ⇒ x 6=σ y)
∣∣.

The adequacy for the induction axiom scheme is as follows:

Lemma 3.13.

M(indr) = rec ∈
∣∣∣∀~y~τ (A {0/x} ⇒ ∀rxι (A⇒A {Sx/x})⇒∀rxιA)

∣∣∣

Proof. Let ~a ∈ ~τM, φ ∈ |A {0/x,~a/~y}|, ψ ∈ |∀rxι (A {~a/~y} ⇒A {Sx/x,~a/~y})|. Since |LbM| =
∅ if b /∈ N, we can use induction to prove that for any n ∈ N, recφψ n ∈ |A {n/x,~a/~y}|:

• n = 0: rec φψ 0 = φ ∈ |A {0/x,~a/~y}|
• n+ 1: recφψ n+ 1 = recφψ succ n = ψ n (recφψ n). Since n ∈ |LnM|, we get:

ψ n ∈ |A {n/x,~a/~y} ⇒A {n+ 1/x,~a/~y}|

and since by induction hypothesis we have recφψ n ∈ |A {n/x,~a/~y}| we get:

ψ n (recφψ n) ∈ |A {n+ 1/x,~a/~y}|

The last axioms are the relativization ones:

Lemma 3.14.

ML0M = 0 ∈ |L0M| MLSM = succ ∈ |LSM|

Proof. The first one is immediate, since |L0M| =
{
0
}
. For the second one, remember that:

LSM ≡ ∀rxιLSxM ≡ ∀xι (LxM ⇒ LSxM)
Since |LaM| = ∅ if a /∈ N, it is sufficient to prove that for any n ∈ N, succ ∈ |LnM ⇒ Ln + 1M|.
Since |LnM| = {n}, it follows from succ n = n+ 1 ∈ |Ln+ 1M|.

36 VALENTIN BLOT

3.3.3. Adequacy for the axiom of choice. When it comes to the axiom of countable choice
AC, the usual route of negative translation followed by intuitionistic realizability becomes
much more difficult. Indeed, AC ⇒ AC¬ is not provable in intuitionistic logic, therefore
the path described in section 3.2.1 cannot be followed as-is and an intuitionistic realizer of
AC¬ must be provided. In [BBC98], a variant of bar recursion was used to realize AC¬,
while in [BO05] the principle of double negation shift ∀x¬¬A⇒¬¬∀xA was realized using
bar recursion (see 3.1.4). With this principle, it becomes possible to derive AC ⇒ AC¬

in intuitionistic logic, and since AC is realized in intuitionistic models by the identity, one
obtains a realizer of AC¬.

We follow here a different approach, since our realizability model is for classical logic, and
we prove that bar recursion realizes the axiom of dependent choice (DCr) in our classical
model. The negative translation of proofs corresponds to the continuation-passing-style
translation on terms and the semantics of λµ-calculus in a category of continuations RC

corresponds to the semantics of its CPS-translation into λR×+ in the cartesian “R-closed”
category C as stated in section 2.2.3, so in order to compare more closely our model with the
usual indirect realizability interpretation, one would need to define a realizability relation
for intuitionistic logic directly in C. Our choice of working in the category of continuations
RC is mainly motivated by the existence of computational models with a natural structure
of category of continuations (as the unbracketed Hyland-Ong games, see section 3.2.1).

We suppose now that M satisfies (DC), and we use the variant of the bar recursion
operator defined in section 3.1.4 to realize the axiom of dependent choice (DCr). First,
we need to make some assumptions on our category of continuations. The first one is a
continuity requirement:

Definition 3.15 (Continuity). If φ ∈ RC (1, [(I → T) → 0]` [I]), ψ ∈ RC (1, [I → T]` [I]),
then there exists m ∈ N such that for any ζ ∈ RC (1, [I → T]` [I]):

(
∀m′ < m, ζ m′ = ψm′

)
⇒ µκ.φ ζ = µκ.φψ

This requirement is satisfied in particular by games models since in that case RC is a cpo-
enriched category in which the base types I and 0 are interpreted as flat domains. Note
however that the full set-theoretic model doesn’t satisfy this, since we can for example
consider a function which gives 0 if the input sequence is the constant 0 sequence, and 1
otherwise.

The second requirement states that we can construct a function from any sequence of
elements:

Definition 3.16 (Sequence internalization). If (φn)n∈N is a sequence of morphisms in the

homset RC (1, [T]` [I]), then there exists a morphism φ ∈ RC (1, [I → T]` [I]) such that
for any n ∈ N, φ n = φn.

In particular, all functions on natural numbers must exist in the model, even the uncom-
putable ones. It is in particular true in the games models, but it is of course not satisfied by
the term model of µPCF, and this is the main motivation for working in a model of µPCF
rather than directly with the syntactic language.

Assuming RC satisfies these two assumptions, we now prove that the interpretation of
(DCr) realizes (DCr):

TYPED REALIZABILITY FOR FIRST-ORDER CLASSICAL ANALYSIS 37

Lemma 3.17. Let ⊥⊥ ⊆ RC (1, [I]).

M(DCr) = λxy.barrec
(
λv.x |v|

(
if0 |v| 0 (π1 v ⇂pred |v|⇃)

))
y ǫ

∈
∣∣∣∀~u~τ

(
∀rxι ∀ryσ

(
∀zσ ¬A {x, y, z} ⇒ ∀x′ιA

{
x′, y, y

})
⇒ ∃vι→σ ∀rxιA {x, v x, v (Sx)}

)∣∣∣

where A denotes a formula over ΣCAωr = ΣPAωr with free variables among xι, yσ, zσ , ~u~τ and
which is of the shape LzM ∧B. For clarity, we write A {t, u, v} instead of A {t/x, u/y, v/z}.

Proof. Recall that we use the bar recursor:

barrec : (A∗⋄ → (A∗ → 0) → A∗) → ((I → A∗) → 0) → A∗⋄ → 0

To simplify notations we define:

last
∆
= λv.if0 |v| 0 (π1 v ⇂pred |v|⇃)

so M(DCr) is:

M(DCr) =

λxy.barrec (λv.x |v| (last v)) y ǫ : (I → T → (A∗ → 0) → A∗) → ((I → A∗) → 0) → 0

Let now ~a ∈ ~τM and write A′ ≡ A {~a/~u}. We use again the notation A′ {t, u, v}. Let:

φ ∈ RC (1, [I → T → (A∗ → 0) → A∗]` [I]) ψ ∈ RC (1, [(I → A∗) → 0]` [I])

be such that:

φ ∈
∣∣∀rxι ∀ryσ

(
∀zσ ¬A′ {x, y, z} ⇒ ∀x′ιA′

{
x′, y, y

})∣∣ ψ ∈
∣∣∀vι→σ ¬∀rxιA′ {x, v x, v (Sx)}

∣∣
We then have to prove:

barrec (λv.φ |v| (last v))ψ ǫ ∈ |⊥|

For conciseness we write:

ζ = barrec (λv.φ |v| (last v))ψ ∈ RC (1, [A∗⋄ → 0]` [I])

so we must prove that ζ ǫ ∈ |⊥|. With our notations, for any ξ ∈ RC (1, [A∗⋄]` [I]) we have:

ζ ξ = barrec (λv.φ |v| (last v))ψ ξ

= ψ (ξ @ φ |ξ| (last ξ) (λx.barrec (λv.φ |v| (last v)) ψ (ξ ∗ x)))

= ψ (ξ @ φ |ξ| (last ξ) (λx.ζ (ξ ∗ x)))

The following iteration lemma (the proof of which is deferred to the end of the section) is
the heart of the adequacy:

Lemma 3.18. Let b0, ..., bn ∈ σM and ϕ0, ..., ϕn−1 ∈ RC (1, [A∗]` [I]) be such that:

b0 = 0σM ∀0 ≤ i < n, ϕi ∈
∣∣A′ {i, bi, bi+1}

∣∣ ζ (ϕ0 ∗ ... ∗ ϕn−1) /∈ |⊥|

where 0σ is the term from section 1.3. There exists bn+1 ∈ σM and ϕn ∈ RC (1, [A∗]` [I])
such that:

ϕn ∈
∣∣A′ {n, bn, bn+1}

∣∣ ζ (ϕ0 ∗ ... ∗ ϕn−1 ∗ ϕn) /∈ |⊥|

38 VALENTIN BLOT

In order to prove ζ ǫ ∈ |⊥|, we use a reductio-ad-absurdum and suppose ζ ǫ /∈ |⊥|. By
iterating the lemma, we build sequences (bn)n∈N in σM and (ϕn)n∈N in RC (1, [B∗]` [I])
such that:

b0 = 0σM ∀n ∈ N, ϕn ∈
∣∣A′ {n, bn, bn+1}

∣∣ and ζ (ϕ0 ∗ ... ∗ ϕn−1) /∈ |⊥|

Since M satisfies (DC), we can build b ∈ (ι→ σ)M such that for every n ∈ N, b n = bn, and
using the second assumption on RC (definition 3.16) we also build ϕ ∈ RC (1, [I → A∗]` [I])
such that for every n ∈ N, ϕ n = ϕn. We now prove that:

ϕ ∈
∣∣∀rxιA′ {x, b x, b (Sx)}

∣∣

Since |LcM| = ∅ if c /∈ N, it is sufficient to prove that for n ∈ N, ϕ n ∈ |A′ {n, b n, b (n+ 1)}|,
but since ϕ n = ϕn, b n = bn and b (n+ 1) = bn+1, this is immediate. Now, since:

ψ ∈
∣∣∀vι→σ ¬∀rxιA′ {x, v x, v (Sx)}

∣∣ ⊆
∣∣¬∀rxιA′ {x, b x, b (Sx)}

∣∣

we get ψ ϕ ∈ |⊥|, so µκ.ψ ϕ ∈ ⊥⊥. We use now the first assumption on RC (definition 3.15),
so there is some m ∈ N such that any morphism ϕ′ ∈ RC (1, [I → B∗]` [I]) which satisfies:

∀m′ < m, ϕ′ m′ = ϕm′

is such that µκ.ψ ϕ′ = µκ.ψ ϕ ∈ ⊥⊥. If we write ξ = ϕ0 ∗ ... ∗ ϕm−1, this is verified in
particular for:

ξ @ φ |ξ| (last ξ) (λx.ζ (ξ ∗ x))

so we get:
µκ.ψ (ξ @ φ |ξ| (last ξ) (λx.ζ (ξ ∗ x))) ∈ ⊥⊥

and finally:

ζ (ϕ0 ∗ ... ∗ ϕm−1) = ζ ξ = ψ (ξ @ φ |ξ| (last ξ) (λx.ζ (ξ ∗ x))) ∈ |⊥|

from which we get our contradiction.

Here is the proof of the iteration lemma:

Proof. Write ξ = ϕ0 ∗ ... ∗ ϕn−1. We have:

ψ (ξ @ φ |ξ| (last ξ) (λx.ζ (ξ ∗ x))) = ζ ξ = ζ (ϕ0 ∗ ... ∗ ϕn−1) /∈ |⊥|

Using kM, sM and recM we can build some b ∈ (ι→ σ)M such that for any 0 ≤ i ≤ n,
b i = bi, and for any i > n, b i = bn. Since ψ ∈ |∀vι→σ ¬∀rxιA′ {x, v x, v (Sx)}|, we have in
particular:

ψ ∈
∣∣¬∀rxιA′ {x, b x, b (Sx)}

∣∣
therefore:

ξ @ φ |ξ| (last ξ) (λx.ζ (ξ ∗ x)) /∈
∣∣∀rxιA′ {x, b x, b (Sx)}

∣∣
Since |LcM| = ∅ if c /∈ N, there must be some i ∈ N such that:

(ξ @ φ |ξ| (last ξ) (λx.ζ (ξ ∗ x))) i /∈
∣∣A′ {i, bi, bi+1}

∣∣
If i < n then we get:

ξ ⇂i⇃= ϕi /∈
∣∣A′ {i, bi, bi+1}

∣∣
which contradicts the hypothesis of the lemma. Therefore, i ≥ n and:

φ |ξ| (last ξ) (λx.ζ (ξ ∗ x)) /∈
∣∣A′ {i, bi, bi+1}

∣∣ =
∣∣A′ {i, bn, bn}

∣∣
First, since ξ = ϕ0 ∗ ... ∗ ϕn−1 we have |ξ| = n ∈ |LnM|, and therefore:

φ |ξ| ∈
∣∣∀ryσ

(
∀zσ ¬A′ {n, y, z} ⇒ ∀x′ιA′

{
x′, y, y

})∣∣

TYPED REALIZABILITY FOR FIRST-ORDER CLASSICAL ANALYSIS 39

We prove now that last ξ ∈ |LbnM| by distinguishing cases:

• n = 0: last ξ = if0 |ξ| 0 (π1 ξ ⇂pred |ξ|⇃) = 0 ∈
∣∣L0σMM

∣∣ = |Lb0M| (indeed, 0 ∈
∣∣L0σMM

∣∣ by
an easy induction on σ)

• n 6= 0: last ξ = if0 |ξ| 0 (π1 ξ ⇂pred |ξ|⇃) = π1 ϕn−1 ∈ |LbnM| since:

ϕn−1 ∈
∣∣A′ {n− 1, bn−1, bn}

∣∣ = |LbnM ∧B {~a/~u, n− 1/x, bn−1/y, bn/z}|

Therefore we have:

φ |ξ| (last ξ) ∈
∣∣∀zσ ¬A′ {n, bn, z} ⇒ ∀x′ιA′

{
x′, bn, bn

}∣∣
and so:

λx.ζ (ξ ∗ x) /∈
∣∣∀zσ ¬A′ {n, bn, z}

∣∣
which means that there exists some bn+1 ∈ σ

M such that:

λx.ζ (ξ ∗ x) /∈
∣∣¬A′ {n, bn, bn+1}

∣∣

and so there exists ϕn ∈ RC (1, [A∗]` [I]) such that ϕn ∈ |A′ {n, bn, bn+1}| and:

ζ (ϕ0 ∗ ... ∗ ϕn−1 ∗ ϕn) = ζ (ξ ∗ ϕn) = (λx.ζ (ξ ∗ x))ϕn /∈ |⊥|

3.4. Extraction. Since the Friedman translation is directly built in the realizability inter-
pretation, the extraction result is an easy consequence of the definitions. We show that from
any Π0

2-formula provable in CAω we can extract a computable witness in RC . Note that in
the extraction lemma, the equality t =τ u is at any type:

Lemma 3.19. From a proof of ⊢ ∀xσ∃yι (t =τ u) in CAω, one can extract a λµ-term M :
T → I such that for any a ∈ σM and φ ∈ |LaM|, there is some n ∈ N such that:

(t {a/x, n/y})M = (u {a/x, n/y})M and M φ = n in RC

Proof. Since ∃ and = are just encodings, we actually have a proof of ⊢ ∀xσ¬∀yι¬¬ (t 6=τ u).
First, we can easily turn it into a proof of ⊢ ∀xσ¬∀yι (t 6=τ u), and we get by relativization
a proof p in CAωr of ⊢ ∀rxσ¬∀ryι (t 6=τ u). The adequacy lemma then tells us:

p
∗ ∈ |∀rxσ¬∀ryι (t 6=τ u)|

If a ∈ σM and φ ∈ |LaM|, we get p∗ φ ∈ |¬∀ryι (t {a/x} 6=τ u {a/x})|. Let fix now:

⊥⊥ =
{
n ∈ RC (1, [I])

∣∣∣ (t {a/x, n/y})M = (u {a/x, n/y})M
}

We prove that λx. [κ] x ∈ |∀ryι (t {a/x} 6=τ u {a/x})|. For that let n ∈ ιM, and let prove
that (λx. [κ] x) n = [κ] n ∈ |t {a/x, n/y} 6= u {a/x, n/y}|. There are two cases:

• n ∈ ⊥⊥: in that case, (t {a/x, n/y})M = (u {a/x, n/y})M, so:

|t {a/x, n/y} 6= u {a/x, n/y}| = |⊥|

and µκ. [κ] n = n ∈ ⊥⊥ so [κ] n ∈ |⊥|

• n /∈ ⊥⊥: in that case, (t {a/x, n/y})M 6= (u {a/x, n/y})M, so:

|t {a/x, n/y} 6= u {a/x, n/y}| = RC (1, [0]` [I])

and therefore [κ] n ∈ |t {a/x, n/y} 6= u {a/x, n/y}|

We get p∗ φ (λx. [κ] x) ∈ |⊥|, so µκ.p∗ φ (λx. [κ] x) ∈ ⊥⊥. This means that µκ.p∗ φ (λx. [κ] x)

is some n ∈ ⊥⊥ (so (t {a/x, n/y})M = (u {a/x, n/y})M). Finally, we have the claimed result

with M
∆
= λu.µκ.p∗ u (λx. [κ] x).

40 VALENTIN BLOT

Similarly to what was done in [BR13], we can define an operatonal semantics for µPCF
and adapt the techniques of e.g. [AC98] to prove computational adequacy with respect to a
non-degenerated RC , i.e. if M : ι in µPCF, then for any n ∈ N:

M →∗ n ⇐⇒ M = n in RC

Using computational adequacy and the extraction lemma in the particular case of σ = ι, we

get that for any m ∈ N, there is some n ∈ N such that M m →∗ n and (t {m/x, n/y})M =

(u {m/x, n/y})M.

Conclusion

Realizability interpretation of classical logic with control operators is a recent field in which
much of the contributions take place in Krivine’s untyped setting. We defined here a re-
alizability model in which proofs are interpreted in a category of continuations, which is
the universal model of typed λµ-calculus. The duality between terms and contexts, which
appears in Krivine’s work as a duality between terms and stacks, is reflected here by the
duality in a category of continuations RC between C and RC .

The direct interpretations of classical logic can be seen as a way to avoid Gödel’s nega-
tive translation on formulas, by using programming languages with an operational semantics
which corresponds to that of their CPS-translation to λ-calculus. Similarly, the choice of
having a free µ-variable κ in our realizers may be seen as a way to avoid Friedman’s A-
translation. Indeed, in Friedman’s original work, the translation is obtained by replacing
each basic predicate P with the disjunction P ∨ A. In classical sequent calculus, the right-
hand context is meant to be interpreted as a disjunction, so adding a fixed µ-variable to
this context corresponds to applying Friedman’s translation on programs instead of proofs.
In many implementations of Friedman’s trick, the formula A is not added as a disjunction
to every predicate, but instead the ⊥ formula is replaced everywhere with A. Our imple-
mentation of Friedman’s translation however allows simpler interpretations of the realizers
in some models. Indeed, the continuation passing hidden behind the usual implementations
is abstracted with the help of λµ-calculus constructs. Rather than adding a continuation on
top of every interpretation of ⊥, we only add one continuation on top of the whole realizer.
This simplicity of the interpretation requires some properties on the model, and in particular
it rules out Scott domains. However, all these properties are satisfied in unbracketed games,
and it would be interesting to find other models satisfying these. The natural candidates
for this are bistable biorders [Lai07] and sequential algorithms [BC82], but these are not
the only ones. Coherent spaces may also satisfy these properties if we choose carefully the
object of natural numbers.

The µ-variable κ is also exploited in the definition of the realizability interpretation, to
parameterize the orthogonality relation between realizers and counter-realizers. However,
contrary to usual interpretations of classical logic, we consider positive predicates, for which
no counter-realizers are defined. Through a suitable restriction on proofs we preserve the
adequacy of the interpretation. Roughly, it amounts to forbid classical reasoning on the pos-
itive formulas, while keeping it in the general case. This introduction of positive predicates
in a classical, negative setting is mainly motivated by the decomposition of the relativized
universal quantifier into a uniform quantifier and a relativization predicate, the relativization
predicate being a positive one.

TYPED REALIZABILITY FOR FIRST-ORDER CLASSICAL ANALYSIS 41

We proved that the usual terms of Gödel’s system T realize the axioms of Peano arith-
metic in our direct setting, without CPS-translation. This is not a surprise since all these
axioms do imply their negative translation intuitionistically. However, when it comes to the
axiom of choice, this is not as easy and we prove, as was done in [BR13], that the bar recur-
sion operator realizes it in a direct interpretation. Interestingly, this bar recursor also gives
computational content to the double-negation shift principle in an intuitionistic setting, and
that same principle allows to derive intuitionistically the negative translation of the axiom
of choice from the axiom of choice.

Finally, we validate our model by proving an extraction result for Π0
2 formulas, relying

once again on the µ-variable κ which allows the orthogonality relation to be a parameter of
the model.

Acknowledgments. I thank the reviewers for their careful reading of my work, which led
to constructive comments and suggestions.

References

[AC98] Roberto Amadio and Pierre-Louis Curien. Domains and Lambda-Calculi, volume 46 of Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press, 1998.
[AHS07] Zena Ariola, Hugo Herbelin, and Amr Sabry. A proof-theoretic foundation of abortive continuations.

Higher-Order and Symbolic Computation, 20(4):403–429, 2007.
[BBC98] Stefano Berardi, Marc Bezem, and Thierry Coquand. On the Computational Content of the Axiom

of Choice. Journal of Symbolic Logic, 63(2):600–622, 1998.
[BC82] Gérard Berry and Pierre-Louis Curien. Sequential Algorithms on Concrete Data Structures. Theo-

retical Computer Science, 20(3):265–321, 1982.
[Blo14] Valentin Blot. Game semantics and realizability for classical logic. PhD thesis, École Normale

Supérieure de Lyon, 2014.
[BO05] Ulrich Berger and Paulo Oliva. Modified bar recursion and classical dependent choice. In Logic

Colloquium ’01, Proceedings of the Annual European Summer Meeting of the Association for Symbolic

Logic, volume 20 of Lecture Notes in Logic, pages 89–107. A K Peters, Ltd., 2005.
[BR13] Valentin Blot and Colin Riba. On Bar Recursion and Choice in a Classical Setting. In 11th Asian

Symposium on Programming Languages and Systems, volume 8301 of Lecture Notes in Computer

Science, pages 349–364. Springer, 2013.
[CH00] Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In 5th International Conference

on Functional Programming, pages 233–243. ACM Press, 2000.
[dG94] Philippe de Groote. On the Relation between the Lambda-Mu-Calculus and the Syntactic The-

ory of Sequential Control. In 5th International Conference on Logic Programming and Automated

Reasoning, volume 822 of Lecture Notes in Computer Science, pages 31–43. Springer, 1994.
[DP01] René David and Walter Py. λµ-calculus and Böhm’s theorem. Journal of Symbolic Logic, 66(1):407–

413, 2001.
[EO12] Martín Hötzel Escardó and Paulo Oliva. The Peirce translation. Annals of Pure and Applied Logic,

163(6):681–692, 2012.
[Gir91] Jean-Yves Girard. A New Constructive Logic: Classical Logic. Mathematical Structures in Computer

Science, 1(3):255–296, 1991.
[Gir93] Jean-Yves Girard. On the Unity of Logic. Annals of Pure and Applied Logic, 59(3):201–217, 1993.
[Göd33] Kurt Gödel. Zur intuitionistischen Arithmetik und Zahlentheorie. Ergebnisse eines mathematischen

Kolloquiums, 4:34–38, 1933.
[Göd58] Kurt Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica,

12(3-4):280–287, 1958.
[Gri90] Timothy Griffin. A Formulae-as-Types Notion of Control. In 17th Symposium on Principles of Pro-

gramming Languages, pages 47–58. ACM Press, 1990.

42 VALENTIN BLOT

[Her95] Hugo Herbelin. Séquents qu’on calcule: de l’interprétation du calcul des séquents comme calcul de

λ-termes et comme calcul de stratégies gagnantes. PhD thesis, Université Paris 7, 1995.
[HO00] Martin Hyland and Luke Ong. On Full Abstraction for PCF: I, II, and III. Information and Com-

putation, 163(2):285–408, 2000.
[HS02] Martin Hofmann and Thomas Streicher. Completeness of Continuation Models for λµ-Calculus.

Information and Computation, 179(2):332–355, 2002.
[HS09] Hugo Herbelin and Alexis Saurin. λµ-calculus and Λµ-calculus: a Capital Difference.

http://hal.inria.fr/inria-00524942, 2009.
[Kle45] Stephen Cole Kleene. On the Interpretation of Intuitionistic Number Theory. Journal of Symbolic

Logic, 10(4):109–124, 1945.
[Koh90] Ulrich Kohlenbach. Theory of majorizable and continuous functionals and their use for the extraction

of bounds from non-constructive proofs: effective moduli of uniqueness for best approximations from

ineffective proofs of uniqueness. PhD thesis, Goethe Universität Frankfurt, 1990.
[Koh08] Ulrich Kohlenbach. Applied Proof Theory: Proof Interpretations and their Use in Mathematics.

Springer Monographs in Mathematics. Springer, 2008.
[Kre59] Georg Kreisel. Interpretation of analysis by means of constructive functionals of finite types. In

Constructivity in mathematics: Proceedings of the colloquium held at Amsterdam, 1957, Studies in
Logic and the Foundations of Mathematics, pages 101–128. North-Holland Publishing Company,
1959.

[Kri94] Jean-Louis Krivine. A General Storage Theorem for Integers in Call-by-Name lambda-Calculus.
Theoretical Computer Science, 129(1):79–94, 1994.

[Kri01] Jean-Louis Krivine. Typed lambda-calculus in classical Zermelo-Frænkel set theory. Archive for

Mathematical Logic, 40(3):189–205, 2001.
[Kri03] Jean-Louis Krivine. Dependent choice, ‘quote’ and the clock. Theoretical Computer Science, 308(1–

3):259–276, 2003.
[Kri09] Jean-Louis Krivine. Realizability in classical logic. Panoramas et synthèses, 27:197–229, 2009.
[Lai97] James Laird. Full Abstraction for Functional Languages with Control. In 12th Annual IEEE Sym-

posium on Logic in Computer Science, pages 58–67. IEEE Computer Society, 1997.
[Lai99] James Laird. A semantic analysis of control. PhD thesis, University of Edinburgh, 1999.
[Lai07] James Laird. Bistable Biorders: A Sequential Domain Theory. Logical Methods in Computer Science,

3(2), 2007.
[LRS93] Yves Lafont, Bernhard Reus, and Thomas Streicher. Continuations Semantics or Expressing Impli-

cation by Negation. Technical Report 93-21, Ludwig-Maximilians-Universität, München, 1993.
[Miq11] Alexandre Miquel. Existential witness extraction in classical realizability and via a negative trans-

lation. Logical Methods in Computer Science, 7(2), 2011.
[Ong96] Luke Ong. A Semantic View of Classical Proofs: Type-Theoretic, Categorical, and Denotational

Characterizations (Preliminary Extended Abstract). In 11th Annual IEEE Symposium on Logic in

Computer Science, pages 230–241. IEEE Computer Society, 1996.
[OS97] Luke Ong and Charles Stewart. A Curry-Howard Foundation for Functional Computation with

Control. In 24th Symposium on Principles of Programming Languages, pages 215–227. ACM Press,
1997.

[OS08] Paulo Oliva and Thomas Streicher. On Krivine’s Realizability Interpretation of Classical Second-
Order Arithmetic. Fundamenta Informaticae, 84(2):207–220, 2008.

[Par92] Michel Parigot. λµ-Calculus: An Algorithmic Interpretation of Classical Natural Deduction. In 3rd

International Conference on Logic Programming and Automated Reasoning, volume 624 of Lecture

Notes in Computer Science, pages 190–201. Springer, 1992.
[Plo77] Gordon Plotkin. LCF Considered as a Programming Language. Theoretical Computer Science,

5(3):223–255, 1977.
[Pow13] Thomas Powell. On bar recursive interpretations of analysis. PhD thesis, Queen Mary University

of London, 2013.
[Pow14] Thomas Powell. The equivalence of bar recursion and open recursion. Annals of Pure and Applied

Logic, 165(11):1727–1754, 2014.
[Sau05] Alexis Saurin. Separation with Streams in the Λµ-calculus. In 20th IEEE Symposium on Logic in

Computer Science, pages 356–365. IEEE Computer Society, 2005.

http://hal.inria.fr/inria-00524942

TYPED REALIZABILITY FOR FIRST-ORDER CLASSICAL ANALYSIS 43

[Sco93] Dana Scott. A Type-Theoretical Alternative to ISWIM, CUCH, OWHY. Theoretical Computer

Science, 121(1-2):411–440, 1993.
[Sel01] Peter Selinger. Control categories and duality: on the categorical semantics of the λµ calculus.

Mathematical Structures in Computer Science, 11(2):207–260, 2001.
[Spe62] Clifford Spector. Provably recursive functionals of analysis: a consistency proof of analysis by an

extension of principles in current intuitionistic mathematics. In Recursive Function Theory: Pro-

ceedings of Symposia in Pure Mathematics, volume 5, pages 1–27. American Mathematical Society,
1962.

[TVD88] Anne Sjerp Troelstra and Dirk Van Dalen. Constructivism in mathematics: an introduction, volume
121, 123 of Studies in logic and the foundations of mathematics. Elsevier, 1988.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	Introduction
	1. Logic
	1.1. Classical multisorted first-order logic
	1.2. Equational theories
	1.3. Peano arithmetic in finite types: PAomega
	1.4. The axiom of choice
	1.5. Models of classical multisorted first-order logic

	2. Syntax and semantics of lambda-mu-calculus
	2.1. lambda-mu-calculus
	2.2. Categories of continuations

	3. A realizability model for classical analysis
	3.1. The relativization predicate
	3.2. The realizability relation
	3.3. Adequacy
	3.4. Extraction

	Conclusion
	Acknowledgments

	References

