Nonlinear Monte Carlo schemes for counterparty risk on credit derivatives - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Nonlinear Monte Carlo schemes for counterparty risk on credit derivatives

Tuyet Mai Nguyen
  • Fonction : Auteur

Résumé

Two nonlinear Monte Carlo schemes, namely, the linear Monte Carlo expansion with randomization of Fujii and Takahashi (2012a,2012b) and the marked branching diffusion scheme of Henry-Labordère (2012), are compared in terms of applicability and numerical behavior regarding counterparty risk computations on credit derivatives. This is done in two dynamic copula models of portfolio credit risk: the dynamic Gaussian copula model and the model in which default dependence stems from joint defaults. For such high-dimensional and nonlinear pricing problems, more standard deterministic or simulation/regression schemes are ruled out by Bellman's " curse of dimensionality " and only purely forward Monte Carlo schemes can be used.
Fichier principal
Vignette du fichier
crepey_nguyen-CORRECTED.pdf (572.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01764400 , version 1 (11-04-2018)

Identifiants

  • HAL Id : hal-01764400 , version 1

Citer

Stéphane Crépey, Tuyet Mai Nguyen. Nonlinear Monte Carlo schemes for counterparty risk on credit derivatives. 2018. ⟨hal-01764400⟩
86 Consultations
113 Téléchargements

Partager

More