
HAL Id: hal-01764400
https://hal.science/hal-01764400

Preprint submitted on 11 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nonlinear Monte Carlo schemes for counterparty risk on
credit derivatives

Stéphane Crépey, Tuyet Mai Nguyen

To cite this version:
Stéphane Crépey, Tuyet Mai Nguyen. Nonlinear Monte Carlo schemes for counterparty risk on credit
derivatives. 2018. �hal-01764400�

https://hal.science/hal-01764400
https://hal.archives-ouvertes.fr


Nonlinear Monte Carlo schemes for
counterparty risk on credit derivatives

Stéphane Crépey and Tuyet Mai Nguyen

Abstract Two nonlinear Monte Carlo schemes, namely, the linear Monte Carlo ex-
pansion with randomization of Fujii and Takahashi (2012a,2012b) and the marked
branching diffusion scheme of Henry-Labordère (2012), are compared in terms of
applicability and numerical behavior regarding counterparty risk computations on
credit derivatives. This is done in two dynamic copula models of portfolio credit
risk: the dynamic Gaussian copula model and the model in which default depen-
dence stems from joint defaults. For such high-dimensional and nonlinear pricing
problems, more standard deterministic or simulation/regression schemes are ruled
out by Bellman’s “curse of dimensionality” and only purely forward Monte Carlo
schemes can be used.

1 Introduction

Counterparty risk is a major issue since the global credit crisis and the ongoing
European sovereign debt crisis. In a bilateral counterparty risk setup, counterparty
risk is valued as the so-called credit valuation adjustment (CVA), for the risk of de-
fault of the counterparty, and debt valuation adjustment (DVA), for own default risk.
In such a setup, the classical assumption of a locally risk-free funding asset used
for both investing and unsecured borrowing is no longer sustainable. The proper
accounting of the funding costs of a position leads to the funding valuation adjust-
ment (FVA). Moreover, these adjustments are interdependent and must be computed
jointly through a global correction dubbed total valuation adjustment (TVA). The
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pricing equation for the TVA is nonlinear due to the funding costs. It is posed over a
random time interval determined by the first default time of the two counterparties.
To deal with the corresponding backward stochastic differential equation (BSDE),
a first reduced-form modeling approach has been proposed in Crépey (2012b), un-
der a rather standard immersion hypothesis between a reference (or market) filtra-
tion and the full model filtration progressively enlarged by the default times of the
counterparties. This basic immersion setup is fine for standard applications, such as
counterparty risk on interest rate derivatives. But it is too restrictive for situations
of strong dependence between the underlying exposure and the default risk of the
two counterparties, such as counterparty risk on credit derivatives, which involves
strong adverse dependence, called wrong-way risk (for some insights of related fi-
nancial contexts, see Fujii and Takahashi (2012b), Brigo, Capponi, and Pallavicini
(2014)). For this reason, an extended reduced-form modeling approach has been
recently developed in Crépey and Song (2014a, 2014b, 2015). With credit deriva-
tives, the problem is also very high-dimensional. From a numerical point of view,
for high-dimensional nonlinear problems, only purely forward simulation schemes
can be used. In Crépey and Song (2015), the problem is addressed by the linear
Monte Carlo expansion with randomization of Fujii and Takahashi (2012a,2012b).

In the present work, we assess another scheme, namely the marked branching dif-
fusion approach of Henry-Labordère (2012), which we compare with the previous
one in terms of applicability and numerical behavior. This is done in two dynamic
copula models of portfolio credit risk: the dynamic Gaussian copula model and the
dynamic Marshall-Olkin model in which default dependence stems from joint de-
faults.

The paper is organized as follows. Sect. 2 and 3 provide a summary of the main
pricing and TVA BSDEs that are derived in Crépey and Song (2014a, 2014b, 2015).
Sect. 4 exposes two nonlinear Monte Carlo schemes that can be considered for solv-
ing these in high-dimensional models, such as the portfolio credit models of Sect. 5.
Comparative numerics in these models are presented in Sect. 6. Sect. 7 concludes.

2 Prices

2.1 Setup

We consider a netted portfolio of OTC derivatives between two defaultable coun-
terparties, generally referred to as the contract between a bank, the perspective of
which is taken, and its counterparty. After having bought the contract from its coun-
terparty at time 0, the bank sets-up a hedging, collateralization (or margining) and
funding portfolio. We call the funder of the bank a third party, possibly composed in
practice of several entities or devices, insuring funding of the bank’s strategy. The
funder, assumed default-free for simplicity, plays the role of lender/borrower of last
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resort after the exhaustion of the internal sources of funding provided to the bank
through its hedge and collateral.

For notational simplicity we assume no collateralization. All the numerical con-
siderations, our main focus in this work, can be readily extended to the case of
collateralized portfolios using the corresponding developments in Crépey and Song
(2015). Likewise, we assume hedging in the simplest sense of replication by the
bank and we consider the case of a fully securely funded hedge, so that the the cost
of the hedge of the bank is exactly reflected by the wealth of its hedging and funding
portfolio.

We consider a stochastic basis (Ω ,GT ,G ,Q), where G = (Gt)t∈[0,T ] is interpreted
as a risk-neutral pricing model on the primary market of the instruments that are
used by the bank for hedging its TVA. The reference filtration F is a subfiltration
of G representing the counterparty risk free filtration, not carrying any direct infor-
mation about the defaults of the two counterparties. The relation between these two
filtrations will be pointed out in the condition (C) introduced later. We denote by:

• Et , the conditional expectation under Q given Gt ,
• r, the risk-free short rate process, with related discount factor βt = e−

∫ t
0 rsds,

• T, the maturity of the contract,
• τb and τc, the default time of the bank and of the counterparty, modeled as G

stopping times with (G ,Q) intensities γb and γc,
• τ = τb∧ τc, the first-to-default time of the two counterparties, also a G stopping

time, with intensity γ such that max(γb,γc)≤ γ ≤ γb + γc,
• τ̄ = τ ∧T, the effective time horizon of our problem (there is no cashflow after

τ̄),
• D, the contractual dividend process,
• ∆ = D−D−, the jump process of D.

2.2 Clean price

We denote by P be the reference (or clean) price of the contract ignoring counter-
party risk and assuming the position of the bank financed at the risk-free rate r, i.e.
the G conditional expectation of the future contractual cash-flows discounted at the
risk-free rate r. In particular,

βtPt = Et

[∫
τ̄

t
βsdDs +βτ̄ Pτ̄

]
, ∀t ∈ [0, τ̄]. (1)

We also define Qt = Pt +1{t=τ<T}∆τ , so that Qτ represents the clean value of the
contract inclusive of the promised dividend at default (if any) ∆τ , which also belongs
to the “debt” of the counterparty to the bank (or vice versa depending on the sign
of Qτ ) in case of default of a party. Accordingly, at time τ (if < T ), the close-out
cash-flow of the counterparty to the bank is modeled as
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R = 1{τ=τc}
(
RcQ+

τ −Q−τ
)
−1{τ=τb}

(
RbQ−τ −Q+

τ

)
−1{τb=τc}Qτ , (2)

where Rb and Rc are the recovery rates of the bank and of the counterparty to each
other.

2.3 All-inclusive price

Let Π be the all-inclusive price of the contract for the bank, including the cost of
counterparty risk and funding costs. Since we assume a securely funded hedge (in
the sense of replication) and no collateralization, the amounts invested and funded
by the bank at time t are respectively given by Π

−
t and Π

+
t . The all-inclusive price Π

is the discounted conditional expectation of all effective future cash flows including
the contractual dividends before τ , the cost of funding the position prior to time τ

and the terminal cash flow at time τ . Hence,

βtΠt = Et

[∫ τ̄

t
βs1s<τ dDs−

∫
τ̄

t
βsλ̄sΠ

+
s ds+βτ̄1τ<T R

]
, (3)

where λ̄ is the funding spread over r of the bank toward the external funder, i.e. the
bank borrows cash from its funder at rate r + λ̄ (and invests cash at the risk-free
rate r). Since the right hand side in (3) depends also on Π , (3) is in fact a backward
stochastic differential equation (BSDE). Consistent with the no arbitrage principle,
the gain process on the hedge is a Q martingale, which explains why it does not
appear in (3).

3 TVA BSDEs

The total valuation adjustment (TVA) process Θ is defined as

Θ = Q−Π . (4)

In this section we review the main TVA BSDEs that are derived in Crépey and Song
(2014a, 2014b, 2015). Three BSDEs are presented. These three equations are es-
sentially equivalent mathematically. However, depending on the underlying model,
they are not always amenable to the same numerical schemes or the numerical per-
formance of a given scheme may differ between them.

3.1 Full TVA BSDE

By taking the difference between (1) and (3), we obtain
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βtΘt = Et

[∫
τ̄

t
βs f vas(Θs)ds+βτ̄1τ<T ξ

]
, ∀t ∈ [0, τ̄], (5)

where f vat(ϑ) = λ̄t(Pt −ϑ)+ is the funding coefficient and where

ξ = Qτ −R = 1{τ=τc}(1−Rc)(Pτ +∆τ)
+−1{τ=τb}(1−Rb)(Pτ +∆τ)

− (6)

is the exposure at default of the bank. Equivalent to (5), the “full TVA BSDE” is
written as

Θt = Et

[∫
τ̄

t
fs(Θs)ds+1τ<T ξ

]
, 0≤ t ≤ τ̄, (I)

for the coefficient ft(ϑ) = f vat(ϑ)− rtϑ .

3.2 Partially reduced TVA BSDE

Let ξ̂ be a G predictable process, which exists by Corollary 3.23 2) in He, Wang, and
Yan (1992), such that ξ̂τ = E[ξ |Gτ−] on τ < ∞ and let f̄ be the modified coefficient
such that

f̄t(ϑ)+ rtϑ = γt ξ̂t︸︷︷︸
cdvat

+ λ̄t(Pt −ϑ)+︸ ︷︷ ︸
f vat (ϑ)

.
(7)

As easily shown (cf. Crépey and Song (2014a, Lemma 2.2)), the full TVA BSDE (I)
can be simplified into the “partially reduced BSDE”

Θ̄t = Et

[∫
τ̄

t
f̄s(Θ̄s)ds

]
, 0≤ t ≤ τ̄, (II)

in the sense that if Θ solves (I), then Θ̄ =Θ1[0,τ) solves (II), whilst if Θ̄ solves (II),
then the process Θ defined as Θ̄ before τ̄ and Θτ̄ = 1τ<T ξ solves (I). Note that both
BSDEs (I) and (II) are (G ,Q) BSDEs posed over the random time interval [0, τ̄], but
with the terminal condition ξ for (I) as opposed to a null terminal condition (and a
modified coefficient) for (II).

3.3 Fully reduced TVA BSDE

Let
f̂t(ϑ) = f̄t(ϑ)− γtϑ = cdvat + f vat(ϑ)− (rt + γt)ϑ .

Assume the following conditions, which are studied in Crépey and Song (2014a,
2014b, 2015):

Condition (C). There exist:
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(C.1) a subfiltration F of G satisfying the usual conditions and such that F semi-
martingales stopped at τ are G semimartingales,

(C.2) a probability measure P equivalent to Q on FT such that any (F ,P) local
martingale stopped at (τ−) is a (G ,Q) local martingale on [0,T ],

(C.3) an F progressive “reduction” f̃t(ϑ) of f̂t(ϑ) such that
∫ ·

0 f̂t(ϑ)dt =
∫ ·

0 f̃t(ϑ)dt
on [0, τ̄].

Let Ẽt denote the conditional expectation under P given Ft . It is shown in Crépey
and Song (2014a, 2014b, 2015) that the full TVA BSDE (I) is equivalent to the
following “fully reduced BSDE”:

Θ̃t = Ẽt

[∫ T

t
f̃s(Θ̃s)ds

]
, t ∈ [0,T ], (III)

equivalent in the sense that if Θ solves (I), then the “F optional reduction” Θ̃ of Θ

(F optional process that coincides with Θ before τ) solves (III), whilst if Θ̃ solves
(III), then Θ = Θ̃1[0,τ)+1[τ]1τ<T ξ solves (I).

Moreover, under mild assumptions (see e.g. Crépey and Song (2015, Theorem
4.1)), one can easily check that f̄t(ϑ) in (7) (resp. f̃t(ϑ)) satisfies the classical BSDE
monotonicity assumption(

f̄t(ϑ)− f̄t(ϑ ′)
)
(ϑ −ϑ

′)≤C(ϑ −ϑ
′)2

(and likewise for f̃ ), for some constant C. Hence, by classical BSDE results nicely
surveyed in Kruse and Popier (2014, Section 2 (resp. 3)), the partially reduced TVA
BSDE (II), hence the equivalent full TVA BSDE (I) (resp. the fully reduced BSDE
(III)), is well-posed in the space of (G ,Q) (resp. (F ,P)) square integrable solu-
tions, where well-posedness includes existence, uniqueness, comparison and BSDE
standard estimates.

3.4 Marked default time setup

In order to be able to compute γξ̂ in f̄ , we assume that τ is endowed with a mark e
in a finite set E, in the sense that

τ = min
e∈E

τe, (8)

where each τe is a stopping time with intensity γe
t such that Q(τe 6= τe′) = 1, e 6= e′,

and
Gτ = Gτ−∨σ(ε),

where ε = argmine∈Eτe yields the “identity” of the mark. The role of the mark is to
convey some additional information about the default, e.g. to encode wrong-way and
gap risk features. The assumption of a finite set E in (8) ensures tractability of the
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setup. In fact, by Lemma 5.1 in Crépey and Song (2015), there exists G -predictable
processes P̃e

t and ∆̃ e
t such that

Pτ = P̃e
τ and ∆τ = ∆̃

e
τ on the event {τ = τe}.

Assuming further that τb = mine∈Eb τe and τc = mine∈Ec τe, where E = Eb∪Ec (not
necessarily a disjoint union), one can then take on [0, τ̄]:

γt ξ̂t = (1−Rc) ∑
e∈Ec

γ
e
t

(
P̃e

t + ∆̃
e
t

)+
− (1−Rb) ∑

e∈Eb

γ
e
t

(
P̃e

t + ∆̃
e
t

)−
,

where the two terms have clear respective CVA and DVA interpretation. Hence, (7)
is rewritten, on [0, τ̄], as

f̄t(ϑ)+ rtϑ = (1−Rc) ∑
e∈Ec

γ
e
t

(
P̃e

t + ∆̃
e
t

)+
︸ ︷︷ ︸

CVA coefficient (cvat )

− (1−Rb) ∑
e∈Eb

γ
e
t

(
P̃e

t + ∆̃
e
t

)−
︸ ︷︷ ︸

DVA coefficient (dvat )

+ λ̄t(Pt −ϑ)+︸ ︷︷ ︸
FVA coefficient ( f vat (ϑ))

.

(9)

If the functions P̃e
t and ∆̃ e

t above not only exist, but can be computed explicitly (as
will be the case in the concrete models of 5.1 and 5.2), once stated in a Markov
setup where

f̄t(ϑ) = f̄ (t,Xt ,ϑ), t ∈ [0,T ], (10)

for some (G ,Q) jump diffusion X , then the partially reduced TVA BSDE (II) can
be tackled numerically. Similarly, once stated in a Markov setup where

f̃t(ϑ) = f̃ (t, X̃t ,ϑ), t ∈ [0,T ], (11)

for some (F ,P) jump diffusion X̃ , then the fully reduced TVA BSDE (III) can be
tackled numerically.

4 TVA numerical schemes

4.1 Linear approximation

Our first TVA approximation is obtained replacing Θs by 0 in the right hand side of
(I), i.e.

Θ0 ≈ E
[∫

τ̄

0
fs(0)ds+1τ<T ξ

]
= E

[∫
τ̄

0
λ̄sP+

s ds+1τ<T ξ

]
. (12)
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We then approximate the TVA by standard Monte-Carlo, with randomization of
the integral to reduce the computation time (at the cost of a small increase in the
variance). Hence, introducing an exponential time ζ of parameter µ , i.e. a random
variable with density φ(s) = 1s≥0 µ e−µs, we have

E
[∫

τ̄

0
fs(0)ds

]
= E

[∫
τ̄

0
φ(s)

1
µ

eµs fs(0)ds
]
= E

[
1ζ<τ̄

eµζ

µ
fζ (0)

]
. (13)

We can use the same technic for (II) and (III), which yields:

Θ0 = Θ̄0 ≈ E
[∫

τ̄

0
f̄s(0)ds

]
= E

[
1ζ<τ̄

eµζ

µ
f̄ζ (0)

]
, (14)

Θ0 = Θ̃0 ≈ Ẽ
[∫ T

0
f̃s(0)ds

]
= Ẽ

[
1ζ<T

eµζ

µ
f̃ζ (0)

]
. (15)

4.2 Linear expansion and interacting particle implementation

Following Fujii and Takahashi (2012a,2012b), we can introduce a perturbation pa-
rameter ε and the following perturbed form of the fully reduced BSDE (III):

Θ̃
ε
t = Ẽt

[∫ T

t
ε f̃s(Θ̃

ε
s )ds

]
, t ∈ [0,T ], (16)

where ε = 1 corresponds to the original BSDE (III). Suppose that the solution of
(16) can be expanded in a power series of ε:

Θ̃
ε
t = Θ̃

(0)
t + εΘ̃

(1)
t + ε

2
Θ̃

(2)
t + ε

3
Θ̃

(3)
t + · · · . (17)

The Taylor expansion of f at Θ̃ (0) reads

f̃t(Θ̃ ε
t )= f̃t(Θ̃

(0)
t )+(εΘ̃

(1)
t +ε

2
Θ̃

(2)
t +· · ·)∂ϑ f̃t(Θ̃

(0)
t )+

1
2
(εΘ̃

(1)
t +ε

2
Θ̃

(2)
t +· · ·)2

∂
2
ϑ 2 f̃t(Θ̃

(0)
t )+· · ·

Collecting the terms of the same order with respect to ε in (16), we obtain Θ̃
(0)
t = 0,

due to the null terminal condition of the fully reduced BSDE (III), and

Θ̃
(1)
t = Ẽt

[∫ T

t
f̃s(Θ̃

(0)
s )ds

]
,

Θ̃
(2)
t = Ẽt

[∫ T

t
Θ̃

(1)
s ∂ϑ f̃s(Θ̃

(0)
s )ds

]
,

Θ̃
(3)
t = Ẽt

[∫ T

t
Θ̃

(2)
s ∂ϑ f̃s(Θ̃

(0)
s )ds

]
,

(18)
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where the third order term should contain another component based on ∂ 2
ϑ 2 f̃ . But, in

our case, ∂ 2
ϑ 2 f̃ involves a Dirac measure via the terms (Pt−ϑ)+ in f vat(ϑ), so that

we truncate the expansion to the term Θ̃
(3)
t as above. If the non-linearity in (III) is

sub-dominant, one can expect to obtain a reasonable approximation of the original
equation by setting ε = 1 at the end of the calculation, i.e.

Θ̃0 ≈ Θ̃
(1)
0 +Θ̃

(2)
0 +Θ̃

(3)
0 .

Carrying out a Monte Carlo simulation by an Euler scheme for every time s in
a time grid and integrating to obtain Θ̃

(1)
0 would be quite heavy. Moreover, this

would become completely unpractical for the higher order terms that involve iter-
ated (multivariate) time integrals. For these reasons, Fujii and Takahashi (2012b)
have introduced a particle interpretation to randomize and compute numerically the
integrals in (18), which we call the FT scheme. Let η1 be the interaction time of
a particle drawn independently as the first jump time of a Poisson process with an
arbitrary intensity µ > 0 starting from time t ≥ 0, i.e., η1 is a random variable with
density

φ(t,s) = 1s≥t µ e−µ(s−t). (19)

From the first line in (18), we have

Θ̃
(1)
t = Ẽt

[∫ T

t
φ(t,s)

eµ(s−t)

µ
f̃s(Θ̃

(0)
s )ds

]
= Ẽt

[
1η1<T

eµ(η1−t)

µ
f̃η1(Θ̃

(0)
η1 )

]
. (20)

Similarly, the particle representation is available for the higher order. By applying
the same procedure as above, we obtain

Θ̃
(2)
t = Ẽt

[
1η1<TΘ̃

(1)
η1

eµ(η1−t)

µ
∂ϑ f̃η1(Θ̃

(0)
η1 )

]
,

where Θ̃
(1)
η1 can be computed by (20). Therefore, by using the tower property of

conditional expectations, we obtain

Θ̃
(2)
t = Ẽt

[
1η2<T

eµ(η2−η1)

µ
f̃η2(Θ̃

(0)
η2 )

eµ(η1−t)

µ
∂ϑ f̃η1(Θ̃

(0)
η1 )

]
, (21)

where η1, η2 are the two consecutive interaction times of a particle randomly drawn
with intensity µ starting from t. Similarly, for the third order, we get

Θ̃
(3)
t = Ẽt

[
1η3<T

eµ(η3−η2)

µ
f̃η3(Θ̃

(0)
η3 )

eµ(η2−η1)

µ
∂ϑ f̃η2(Θ̃

(0)
η2 )

eµ(η1−t)

µ
∂ϑ f̃η1(Θ̃

(0)
η1 )

]
,

(22)
where η1, η2, η3 are consecutive interaction times of a particle randomly drawn
with intensity µ starting from t. In case t = 0, (20), (21) and (22) can be simplified
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as

Θ̃
(1)
0 = Ẽ

[
1ζ1<T

eµζ1

µ
f̃ζ1

(Θ̃
(0)
ζ1

)

]

Θ̃
(2)
0 = Ẽ

[
1ζ1+ζ2<T

eµζ1

µ
∂ϑ f̃ζ1

(Θ̃
(0)
ζ1

)
eµζ2

µ
f̃ζ1+ζ2

(Θ̃
(0)
ζ1+ζ2

)

]

Θ̃
(3)
0 = Ẽ

[
1ζ1+ζ2+ζ3<T

eµζ1

µ
∂ϑ f̃ζ1

(Θ̃
(0)
ζ1

)
eµζ2

µ
∂ϑ f̃ζ1+ζ2

(Θ̃
(0)
ζ1+ζ2

)
eµζ3

µ
f̃ζ1+ζ2+ζ3

(Θ̃
(0)
ζ1+ζ2+ζ3

)

]
(23)

where ζ1, ζ2, ζ3 are the elapsed time from the last interaction until the next interac-
tion, which are independent exponential random variables with parameter µ .

Note that the pricing model is originally defined with respect to the full stochastic
basis (G ,Q). Even in the case where there exists a stochastic basis (F ,Q) satisfying
the condition (C), (F ,Q) simulation may be nontrivial. Lemma 8.1 in Crépey and
Song (2015) allows us to reformulate the Q expectations in (23) as the following Q
expectations, with Θ̄ (0) = 0:

Θ̃
(1)
0 = Θ̄

(1)
0 = E

[
1ζ1<τ̄

eµζ1

µ
f̄ζ1

(Θ̄
(0)
ζ1

)

]

Θ̃
(2)
0 = Θ̄

(2)
0 = E

[
1ζ1+ζ2<τ̄

eµζ1

µ
∂ϑ f̄ζ1

(Θ̄
(0)
ζ1

)
eµζ2

µ
f̄ζ1+ζ2

(Θ̄
(0)
ζ1+ζ2

)

]

Θ̃
(3)
0 = Θ̄

(3)
0 = E

[
1ζ1+ζ2+ζ3<τ̄

eµζ1

µ
∂ϑ f̄ζ1

(Θ̄
(0)
ζ1

)
eµζ2

µ
∂ϑ f̄ζ1+ζ2

(Θ̄
(0)
ζ1+ζ2

)

× eµζ3

µ
f̄ζ1+ζ2+ζ3

(Θ̄
(0)
ζ1+ζ2+ζ3

)
]
,

(24)

which is nothing but the FT scheme applied to the partially reduced BSDE (II). The
tractability of the FT schemes (23) and (24) relies on the nullity of the terminal
condition of the related BSDEs (III) and (II), which implies that Θ̄ (0) = Θ̃ (0) = 0.
By contrast, an FT scheme would not be practical for the full TVA BSDE (5) with
terminal condition ξ 6= 0. Also note that the first order in the FT scheme (23) (resp.
(24)) is nothing but the linear approximation (15) (resp. (14)).

4.3 Marked branching diffusion approach

Based on an old idea of McKean (1975), the solution u(t0,x0) to a PDE

∂tu+L u+µ(F(u)−u) = 0, u(T,x) =Ψ(x), (25)
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where L is the infinitesimal generator of a strong Markov process X and F(y) =
∑

d
k=0 akyk is a polynomial of order d, admits a probabilistic representation in terms

of a random tree T (branching diffusion). The tree starts from a single particle
(“trunk”) born from (t0,x0). Subsequently, every particle born from a node (t,x)
evolves independently according to the generator L of X until it dies at time t ′ =
(t + ζ ) in a state x′, where ζ is an independent µ-exponential time (one for each
particle). Moreover, in dying, a particle gives birth to an independent number of
k′ new particles starting from the node (t ′,x′), where k′ is drawn in the finite set
{0,1, · · · ,d} with some fixed probabilities p0, p1, · · · , pd . The marked branching
diffusion probabilistic representation reads

u(t0,x0) = Et0,x0

[
∏

{inner nodes (t,x,k) of T }

ak

pk
∏

{states x of particles alive at T}
Ψ(x)

]

= Et0,x0

[
d

∏
k=0

(
ak

pk

)nk ν

∏
l=1

Ψ(xl)

]
, (26)

where nk is the number of branching with k descendants up on (0,T ) and ν is the
number of particles alive at T, with corresponding locations x1, . . . ,xν .

The marked branching diffusion method of Henry-Labordère (2012) for CVA
computations, dubbed PHL scheme henceforth, is based on the idea that, by ap-
proximating y+ by a well-chosen polynomial F(y), the solution to the PDE

∂tu+L u+µ(u+−u) = 0, u(T,x) =Ψ(x), (27)

can be approximated by the solution to the PDE (25), hence by (26). We want to
apply this approach to solve the TVA BSDEs (I), (II) or (III) for which, instead of
fixing the approximating polynomial F(y) once for all in the simulations, we need a
state dependent polynomial approximation to gt(y) = (Pt−y)+ (cf. (7)) in a suitable
range for y. Moreover, (I) and (II) are BSDEs with random terminal time τ̄, equiva-
lently written in a Markov setup as Cauchy-Dirichlet PDE problems, as opposed to
the pure Cauchy problem (27). Hence, some adaptation of the method is required.
We show how to do it for (II), after which we directly give the algorithm in the
similar case of (I) and in the more classical (pure Cauchy) case of (III). Assuming
τ given in terms of a (G ,Q) Markov factor process X as τ = inf{t > 0 : Xt /∈ D}
for some domain D , the Cauchy-Dirichlet PDE used for approximating the partially
reduced BSDE (II) reads:

(∂t +A )ū+µ (F̄(ū)− ū) = 0 on [0,T ]×D , ū(t,x) = 0 for t = T or x /∈D , (28)

where A is the generator of X and F̄t,x(y) = ∑
d
k=0 āk(t,x)yk is such that

µ(F̄t,x(y)− y)≈ f̄ (t,x,y), i.e. F̄t,x(y)≈
f̄ (t,x,y)

µ
+ y. (29)

Specifically, in view of (9), one can set
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F̄t,x(y) =
1
µ

(
cdva(t,x)+ λ̄ pol

(
P(t,x)− y

)
− ry

)
+ y =

d

∑
k=0

āk(t,x)yk, (30)

where pol(r) is a d-order polynomial approximation of r+ in a suitable range for
r. The marked branching diffusion probabilistic representation of ū(t0,x0) ∈ D in-
volves a random tree T made of nodes and “particles” between consecutive nodes
as follows. The tree starts from a single particle (trunk) born from the root (t0,x0).
Subsequently, every particle born from a node (t,x) evolves independently accord-
ing to the generator L of X until it dies at time t ′ = (t + ζ ) in a state x′, where ζ

is an independent µ-exponential time. Moreover, in dying, if its position x′ at time
t ′ lies in D , the particle gives birth to an independent number of k′ new particles
starting from the node (t ′,x′), where k′ is drawn in the finite set {0,1, · · · ,d} with
some fixed probabilities p0, p1, · · · , pd . Figure 1 describes such a random tree in
case d = 2. The first particle starts from the root (t0,x0) and dies at time t1, generat-
ing two new particles. The first one dies at time t11 and generates a new particle, who
dies at time t111 > T without descendant. The second one dies at time t12 and gener-
ates two new particles, where the first one dies at time t121 without descendant and
the second one dies at time t122 outside the domain D , hence also without descen-
dant. The blue points represent the inner nodes, the red points the outer nodes and
the green points the exit points of the tree out of the time-space domain [0,T ]×D .
The marked branching diffusion probabilistic representation of ū is written as

 

D 

root (t0,x0) 

node (t1,x1,2) 

node (t11,x11,1) 

node (t111,x111,0) 

node (t12,x12,2) 

node (t121,x121,0) 

node (t122,x122,0) 

exit point 

T 

0 

exit point 

Fig. 1 PHL random tree



Nonlinear Monte Carlo schemes for counterparty risk on credit derivatives 13

ū(t0,x0) = Et0,x0

1T ⊂[0,T ]×D ∏
{inner nodes (t,x,k) of T }

āk(t,x)
pk

 , (t0,x0) ∈ [0,T ]×D .

(31)
Note that (31) is unformal at that stage, where we did not justify whether the PDE
(28) has a solution ū and in which sense. In fact, the following result could be used
for proving that the function ū defined in the first line is a viscosity solution to (28).

Proposition 1. Denoting by ū the function defined by the right hand side in (31)
(assuming integrability of the integrand on the domain [0,T ]×D), the process Yt =
ū(t,Xt),0≤ t ≤ τ̄, solves the BSDE associated with the Cauchy-Dirichlet PDE (28),
namely

Yt = Et

[∫ τ̄

t
µ

(
F̄s,Xs(Ys)−Ys

)
ds
]
, t ∈ [0, τ̄] (32)

(which, in view of (29), approximates the partially reduced BSDE (II), so that Y ≈ Θ̄

provided Y is square integrable).

Proof. Let (t1,x1,k1) be the first branching point in the tree rooted at (0,X0) and
let T j denote k1 independent trees of the same kind rooted at (t1,x1). By using the
independence and the strong Markov property postulated for X , we obtain

ū(t,Xt) =
d

∑
k1=0

Et,Xt

[
1t1<T pk1

ak1(t1,x1)

pk1

×

k1

∏
j=1

Et1,x1

1T j⊂[0,T ]×D} ∏
{inner node (s,x,k) of T j}

ak(s,x)
pk


= Et,Xt

1t1<T

d

∑
k1=0

ak1(t1,x1)
k1

∏
j=1

Et1,x1

1T j⊂[0,T ]×D ∏
{inner node (s,x,k) of T j}

ak(s,x)
pk


= Et,Xt

[
1t1<T

d

∑
k1=0

ak1(t1,x1)
k1

∏
j=1

ū(t1,x1)

]
= Et,Xt

[
1t1<T F̄t1,x1(ū(t,X

t1,x1
t ))

]
= Et,Xt

[∫
τ̄

t
µ(s)e−

∫ s
t µ(u)duF̄s,X t,x

s
(ū(s,X t,x

s ))ds
]
, 0≤ t ≤ τ̄,

i.e. Yt = ū(t,Xt) solves (32).

If 1τ<T ξ is given as a deterministic function Ψ(τ,Xτ), then a similar approach
(using the same tree T ) can be applied to the full BSDE (I) in terms of the Cauchy-
Dirichlet PDE

(∂t +A )u+µ (F(u)−u) = 0 on [0,T ]×D , u(t,x) =Ψ(t,x) for t = T or x /∈D ,
(33)

where Ft,x(y) = ∑
d
k=0 ak(t,x)yk is such that
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µ(Ft,x(y)− y)≈ f (t,x,y), i.e. Ft,x(y)≈
f (t,x,y)

µ
+ y.

This yields the approximation formula alternative to (31):

Θ0 ≈ E

 ∏
{inner node (t,x,k) of T }

ak(t,x)
pk

∏
{exit point (t,x) of T }

Ψ(t,x)

 , (34)

where an exit point of T means a point where a branch of the tree leaves for the first
time the time-space domain [0,T ]×D . Last, regarding the (F ,Q) reduced BSDE
(III), assuming an (F ,Q) Markov factor process X̃ with generator Ã and domain
D , we can apply a similar approach in terms of the Cauchy PDE

(∂t + Ã )ũ+µ

(
F̃t,x(ũ)− ũ

)
= 0 on [0,T ]×D , ũ(t,x) = 0 for t = T or x /∈D ,

(35)
where F̃t,x(y) = ∑

d
k=0 ãk(t,x)yk is such that

µ(F̃t,x(y)− y)≈ f̃ (t,x,y), i.e. F̃t,x(y)≈
f̃ (t,x,y)

µ
+ y.

We obtain

Θ0 = Θ̃0 ≈ Ẽ

1
T̃ ⊂[0,T ]×D ∏

inner node (t,x,k) of T̃

ãk(t,x)
pk

 , (36)

where T̃ is the branching tree associated with the Cauchy PDE (35) (similar to T̃

but for the generator Ã .

5 TVA models for credit derivatives

Our goal is to apply the above approaches to TVA computations on credit derivatives
referencing the names in N? = {1, . . . ,n}, for some positive integer n, traded be-
tween the bank and the counterparty respectively labeled as−1 and 0. In this section
we briefly survey two models of the default times τi, i ∈ N = {−1,0,1, . . . ,n}, that
will be used for that purpose with τb = τ−1 and τc = τ0, namely the dynamic Gaus-
sian copula (DGC) model and the dynamic Marshall-Olkin copula (DMO) model.
For more details the reader is referred to (Crépey, Bielecki and Brigo 2014, Chapters
7 and 8) and (Crépey and Song 2015, Sections 6 and 7).
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5.1 Dynamic Gaussian copula TVA model

5.1.1 Model of default times

Let there be given a function ς(·) with unit L2 norm on R+ and a multivariate Brow-
nian motion B = (Bi)i∈N with pairwise constant correlation ρ ≥ 0 in its own com-
pleted filtration B = (Bt)t≥0. For each i ∈ N, let hi be a continuously differentiable
increasing function from R∗+ to R, with lim0 hi(s) =−∞ and lim+∞ hi(s) =+∞, and
let

τi = h−1
i
(
εi
)
, where εi =

∫ +∞

0
ς(u)dBi

u. (37)

Thus the (τi)i∈N follow the standard Gaussian copula model of Li (2000), with cor-
relation parameter ρ and with marginal survival function Φ ◦hi of τi, where Φ is the
standard normal survival function. In particular, these τi do not intersect each other.
In order to make the model dynamic as required by counterparty risk applications,
the model filtration G is given as the Brownian filtration B progressively enlarged
by the τi, i.e.

Gt = Bt ∨
∨
i∈N

(
σ(τi∧ t)∨σ({τi > t})

)
, ∀t ≥ 0, (38)

and the reference filtration F is given as B progressively enlarged by the default
times of the reference names, i.e.

Ft = Bt ∨
∨

i∈N?

(
σ(τi∧ t)∨σ({τi > t})

)
, ∀t ≥ 0. (39)

As shown in Section 6.2 of Crépey and Song (2015), for the filtrations G and F as
above, there exists a (unique) probability measure P equivalent to Q such that the
condition (C) holds. For every i ∈ N, let

mi
t =

∫ t

0
ς(u)dBi

u, ki
t = τi1{τi≤t},

and let mt = (mi
t)i∈N , kt = (ki

t)i∈N , k̃t = (1i∈N?ki
t)i∈N . The couple Xt = (mt ,kt)

(resp. X̃t = (mt , k̃t)) plays the role of a (G ,Q) (resp. (F ,P)) Markov factor process
in the dynamic Gaussian copula (DGC) model.

5.1.2 TVA model

A DGC setup can be used as a TVA model for credit derivatives, with mark i=−1,0
and Eb = {−1}, Ec = {0}. Since there are no joint defaults in this model, it is harm-
less to assume that the contract promises no cash-flow at τ, i.e., ∆τ = 0, so that
Qτ = Pτ . By (Crépey, Bielecki and Brigo 2014, Propositions 7.3.1 page 178 and
7.3.3 page 181), in the case of vanilla credit derivatives on the reference names,
namely CDS contracts and CDO tranches (cf. (47)), there exists a continuous, ex-
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plicit function P̃i such that
Pτ = P̃i(τ,mτ ,kτ−), (40)

or P̃i
τ in a shorthand notation, on the event {τ = τi}. Hence, (9) yields

f̄t(ϑ)+ rtϑ = (1−Rc)γ
0
t (P̃

0
t )

+− (1−Rb)γ
−1
t (P̃−1

t )− + λ̄t(Pt −ϑ)+, ∀t ∈ [0, τ̄].

Assume that the processes r and λ̄ are given before τ as continuous functions of
(t,Xt), which also holds for P in the case of vanilla credit derivatives on names in
N. Then the coefficients f̄ and in turn f̃ are deterministically given in terms of the
corresponding factor processes as

f̄t(ϑ) = f̄ (t,Xt ,ϑ), f̃t(ϑ) = f̃ (t, X̃t ,ϑ),

so that we are in the Markovian setup where the FT and the PHL schemes are valid
and, in principle, applicable.

5.2 Dynamic Marshall-Olkin copula TVA model

The above dynamic Gaussian copula model allows dealing with TVA on CDS con-
tracts. But a Gaussian copula dependence structure is not rich enough for ensuring
a proper calibration to CDS and CDO quotes at the same time. If CDO tranches are
also present in a portfolio, a possible alternative is the following dynamic Marshall-
Olkin (DMO) copula model, also known as the “common shock” model.

5.2.1 Model of default times

We define a family Y of “shocks”, i.e. subsets Y ⊆N of obligors, usually consisting
of the singletons {−1}, {0}, {1}, . . . , {n}, and a few “common shocks” I1, I2, · · · , Im
representing simultaneous defaults. For Y ∈ Y , the shock time ηY is defined as an
i.i.d. exponential random variable with parameter γY . The default time of obligor i
in the common shock model is then defined as

τi = min
Y∈Y ,i∈Y

ηY . (41)

Example 1. Figure 2 shows one possible default path in a common-shock model
with n= 3 and Y = {{−1},{0},{1},{2},{3},{2,3},{0,1,2},{−1,0}}. The inner
oval shows which shocks happened and caused the observed default scenarios at
successive default times.

The full model filtration G is defined as
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Fig. 2 One possible default path in the common-shock model with n = 3 and Y =
{{−1},{0},{1},{2},{3},{2,3},{0,1,2},{−1,0}}.

Gt =
∨

Y∈Y

(
σ(ηY ∧ t)∨σ({ηY > t})), ∀t ≥ 0.

Letting Y◦ = {Y ∈ Y ;−1,0 /∈ Y}, the reference filtration F is given as

Ft =
∨

Y∈Y◦

(
σ(ηY ∧ t)∨σ({ηY > t})), t ≥ 0.

As shown in Section 7.2 of Crépey and Song (2015), in the DMO model with G and
F as above, the condition (C) holds for P =Q. Let JY = 1[0,ηY ). Similar to (m,k)
(resp. (m, k̃)) in the DGC model, the process

X = (JY )Y∈Y (resp. X̃ = (1Y∈Y◦J
Y )Y∈Y ) (42)

plays the role of a (G ,Q) (resp. (F ,Q)) Markov factor in the DMO model.

5.2.2 TVA model

A DMO setup can be used as a TVA model for credit derivatives, with

Eb = Yb := {Y ∈ Y ;−1 ∈ Y}, Ec = Yc := {Y ∈ Y ; 0 ∈ Y}, E = Y• := Yb∪Yc

and
τb = τ−1 = min

Y∈Yb
ηY , τc = τ0 = min

Y∈Yc
ηY ,

hence
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τ = min
Y∈Y•

ηY , γ = 1[0,τ)γ̃ with γ̃ = ∑
Y∈Y•

γY . (43)

By (Crépey, Bielecki and Brigo 2014, Proposition 8.3.1 page 205), in the case of
CDS contracts and CDO tranches, for every shock Y ∈ Y and process U = P or ∆ ,
there exists a continuous, explicit function ŨY such that

Uτ = ŨY (τ,Xτ−), (44)

or ŨY
τ in a shorthand notation, on the event {τ = ηY}. The coefficient f̄t(ϑ) in (9)

is then given, for t ∈ [0, τ̄], by

f̄t(ϑ)+ rtϑ = (1−Rc) ∑
Y∈Yc

γ
Y
t
(
P̃Y

t + ∆̃
Y
t
)+− (1−Rb) ∑

Y∈Yb

γ
Y
t
(
P̃Y

t + ∆̃
Y
t
)−

+ λ̄t(Pt −ϑ)+.

(45)

Assuming that the processes r and λ̄ are given before τ as continuous functions of
(t,Xt), which also holds for P in case of vanilla credit derivatives on the reference
names, then

f̄t(ϑ) = f̄ (t,Xt ,ϑ), f̃t(ϑ) = f̄t(ϑ)− γ̃ϑ = f̃ (t, X̃t ,ϑ) (46)

(cf. (43)), so that we are again in a Markovian setup where the FT and the PHL
schemes are valid and, in principle, applicable.

5.3 Strong versus weak dynamic copula model

However, one peculiarity of the TVA BSDEs in our credit portfolio models is that,
even though full and reduced Markov structures have been identified, which is re-
quired for justifying the validity of the FT and/or PHL numerical schemes, and the
corresponding generators A or Ã can be written explicitly , the Markov structures
are too heavy for being of any practical use in the numerics. Instead, fast and exact
simulation and clean pricing schemes are available based on the dynamic copula
structures.

Moreover, in the case of the DGC model, we lose the Gaussian copula structure
after a branching point in the PHL scheme. In fact, as visible in (Crépey, Bielecki
and Brigo 2014, Formula (7.7) p. 175), the DGC conditional multivariate survival
probability function is stated in terms of a ratio of Gaussian survival probability
functions, which is explicit but does not simplify into a single Gaussian survival
probability function. It’s only in the DMO model that the conditional multivariate
survival probability function, which arises as a ratio of exponential survival proba-
bility functions (see (Crépey, Bielecki and Brigo 2014, Formula (8.11) p. 197 and
Section 8.2.1.1)), simplifies into a genuine exponential survival probability function.
Hence, the PHL scheme is not applicable in the DGC model.
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The FT scheme based on (III) is not practical either because the Gaussian copula
structure is only under Q and, again, the (full or reduced) Markov structures are
not practical. In the end, the only practical scheme in the DGC model is the FT
scheme based on the partially reduced BSDE (II). Eventually, it’s only in the DMO
model that the FT and the PHL schemes are both practical and can be compared
numerically.

6 Numerics

For the numerical implementation, we consider stylized CDS contracts and protec-
tion legs of CDO tranches corresponding to dividend processes of the respective
form, for 0≤ t ≤ T :

Di
t =
(
(1−Ri)1t≥τi −Si(t ∧ τi)

)
Nomi

Dt =
((

(1−R) ∑
j∈N

1t≥τ j − (n+2)a
)+∧ (n+2)(b−a)

)
Nom,

(47)

where all the recoveries Ri and R (resp. nominals Nomi and Nom) are set to 40%
(resp. to 100). The contractual spreads Si of the CDS contracts are set such that
the corresponding prices are equal to 0 at time 0. Protection legs of CDO tranches,
where the attachment and detachment points a and b are such that 0 ≤ a ≤ b ≤
100%, can also be seen as CDO tranches with upfront payment. Note that credit
derivatives traded as swaps or with upfront payment coexist since the crisis. Unless
stated otherwise, the following numerical values are used:

r = 0,Rb = 1,Rc = 40%, λ̄ = 100 bp = 0.01,µ =
2
T
,m = 104.

Note. Only the PHL numerical results are new in what follows. The FT results,
presented for comparison with the PHL ones, have been retrieved from Crépey and
Song (2015).

6.1 Numerical results in the DGC model

First we consider DGC random times τi defined by (37), where the function hi is
chosen so that τi follows an exponential distribution with parameter γi (which in
practice can be calibrated to a related CDS spread or a suitable proxy). More pre-
cisely, let Φ and Ψi be the survival functions of a standard normal distribution and
an exponential distribution with intensity γi. We choose hi = Φ−1 ◦Ψi, so that (cf.
(37))

Q(τi≥t) =Q
(
Ψ
−1

i (Φ (εi))≥t
)
=Q

(
Φ (εi)≤Ψi(t)

)
=Ψi(t),
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for Φ (εi) has a standard uniform distribution. Moreover, we use a function ς(·) in
(37) constant before a time horizon T̄ > T and null after T̄ , so that ς(0) = 1√

T̄
(given

the constraint that ν2(0) =
∫

∞

0 ς2(s)ds = 1) and, for t ≤ T̄ ,

ν
2(t) =

∫
∞

t
ς

2(s)ds =
T̄ − t

T̄
, mi

t =
∫ t

0
ς(u)dBi

u =
1√
T̄

Bi
t ,
∫

∞

0
ς(u)dBi

u =
1√
T̄

Bi
T̄ .

In the case of the DGC model, the only practical TVA numerical scheme is the FT
scheme (24) based on the partially reduced BSDE (II), which can be described by
the following steps:

1. Draw an time ζ1 following an exponential law of parameter µ . If ζ1 < T , then
simulate mζ1

= ( 1√
T̄

Bi
ζ1
)l∈N ∼N (0, ζ1

T̄ In(1,ρ)), where In(1,ρ) is a n×n matrix
with diagonal equal to 1 and all off-diagonal entries equal to ρ , and go to Step 2.
Otherwise, go to Step 4.

2. Draw a second time ζ2, independent from ζ1, following an exponential law of
parameter µ . If ζ1 + ζ2 < T , then obtain the vector mζ1+ζ2

as mζ1
+(mζ1+ζ2

−
mζ1

), where mζ1+ζ2
−mζ1

= ( 1√
T̄
(Bi

ζ1+ζ2
−Bi

ζ1
))l∈N ∼N (0, ζ2

T̄ In(1,ρ)), and go
to Step 3. Otherwise, go to Step 4.

3. Draw a third time ζ3, independent from ζ1 and ζ2, following an exponential
law of parameter µ . If ζ1 + ζ2 + ζ3 < T , then obtain the vector mζ1+ζ2+ζ3

as
mζ1+ζ2

+(mζ1+ζ2+ζ3
−mζ1+ζ2

), where mζ1+ζ2+ζ3
−mζ1+ζ2

= ( 1√
T̄
(Bi

ζ1+ζ2+ζ3
−

Bi
ζ1+ζ2

))l∈N ∼N (0, ζ3
T̄ In(1,ρ)). Go to Step 4.

4. Simulate the vector mT̄ from the last simulated vector mt (t = 0 by default)
as mt +(mT̄ −mt), where mT̄ −mt = ( 1√

T̄
(Bi

T̄ −Bi
t))i∈N ∼N (0, T̄−t

T̄ In(1,ρ)).

Deduce (Bi
T̄ )i∈N , hence τi =Ψ

−1
i ◦Φ

(
1√
T̄

Bi
T̄

)
, i∈N, and in turn the vectors kζ1

(if ζ1+ζ2+ζ3 < T ), kζ1+ζ2
(if ζ1+ζ2 < T ) and kζ1+ζ2+ζ3

(if ζ1+ζ2+ζ3 < T ).
5. Compute f̄ζ1

, f̄ζ1+ζ2
, and f̄ζ1+ζ2+ζ3

for the three orders of the FT scheme.

We perform TVA computations on CDS contracts with maturity T = 10 years,
choosing for that matter T̄ = T +1 = 11 years, hence ς =

1[0,11]√
11

, for ρ = 0.6 unless
otherwise stated. Table 1 displays the contractual spreads of the CDS contracts used
in these experiments. In Figure 3, the left graph shows the TVA on a CDS on name

Table 1 Time-0 bp CDS spreads of names−1 (the bank), 0 (the counterparty) and of the reference
names 1 to n used when n = 1 (left) and n = 10 (right).

i -1 0 1
Si 36 41 47

i −1 0 1 2 3 4 5 6 7 8 9 10
Si 39 40 47 36 41 48 54 54 27 30 36 50

1, computed in a DGC model with n = 1 by FT scheme of order 1 to 3, for different
levels of nonlinearity represented by the value of the unsecured borrowing spread
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λ̄ . The right graph shows similar results regarding a portfolio comprising one CDS
contract per name i = 1, . . . ,10. The time-0 clean value of the default leg of the CDS
in case n = 1, respectively the sum of the ten default legs in case n = 10, is 4.52,
respectively 40.78 (of course P0 = 0 in both cases by definition of fair contractual
spreads). Hence, in relative terms, the TVA numbers visible in Figure 3 are quite
high, much greater for instance than in the cases of counterparty risk on interest
rate derivatives considered in Crépey, Gerboud, Grbac, and Ngor (2013). This is
explained by the wrong-way risk feature of the DGC model, namely, the default in-
tensities of the surviving names and the value of the CDS protection spike at defaults
in this model. When λ̄ increases (for λ̄ = 0 that’s a case of linear TVA where FT
higher order terms equal 0), the second (resp. third) FT term may represent in each
case up to 5% to 10% of the first (resp. second) FT term, from which we conclude
that the first FT term can be used as a first order linear estimate of the TVA, with a
nonlinear correction that can be estimated by the second FT term.
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Fig. 3 Left: DGC TVA on one CDS computed by FT scheme of order 1 to 3, for different levels
of nonlinearity (unsecured borrowing spread λ̄ ). Right: Similar results regarding the portfolio of
CDS contracts on ten names.

In Figure 4, the left graph shows the TVA on one CDS computed by FT scheme
of order 3 as a function of the DGC correlation parameter ρ, with other parameters
set as before. The right graph shows the analogous results regarding the portfolio
of ten CDS contracts. In both cases, the TVA numbers increase (roughly linearly)
with ρ, including for high values of ρ, as desirable from the financial interpretation
point of view, whereas it has been noted in Brigo and Chourdakis (2008) (see the
blue curve in Figure 1 of the ssrn version of the paper) that for high levels of the
correlation between names, other models may show some pathological behaviours.

In Figure 5, the left graph shows that the errors, in the sense of the relative stan-
dard errors (% rel. SE), of the different orders of the FT scheme do not explode with
the dimension (number of credit names that underlie the CDS contracts). The mid-
dle graph, produced with n = 1, shows that the errors do not explode with the level
of nonlinearity represented by the unsecured borrowing spread λ̄ . Consistent with
the fact that the successive FT terms are computed by purely forward Monte Carlo
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Fig. 4 Left: TVA on one CDS computed by FT scheme of order 3 as a function of the DGC cor-
relation parameter ρ. Right: Similar results regarding a portfolio of CDS contracts on ten different
names.

schemes, their computation times are essentially linear in the number of names, as
visible in the right graph.
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Fig. 5 Left: The % relative standard errors of the different orders of the expansions do not explode
with the number of names (λ̄ = 100 bp). Middle: The % relative standard errors of the different
orders of the expansions do not explode with the level of nonlinearity represented by the unsecured
borrowing spread λ̄ (n = 1). Right: Since FT terms are computed by purely forward Monte Carlo
schemes, their computation times are linear in the number of names (λ̄ = 100 bp).

To conclude this section, we compare the linear approximation (14) correspond-
ing to the first FT term in (24) (FT1 in Table 2) with the linear approximations
(12)-(13) (LA in Table 2). One can see from Table 2 that the LA and FT1 estimates
are consistent (at least in the sense of their 95% confidence intervals, which always
intersect each other). But the LA standard errors are larger than the FT1 ones. In
fact, using the formula for the intensity γ of τ in FT1 can be viewed as a form of
variance reduction with respect to LA, where τ is simulated. Of course, for λ̄ 6= 0
(case of the right tables where λ̄ = 3%), both linear approximations are biased as
compared with the complete FT estimate (with nonlinear correction, also shown in
Table 2), particularly in the high dimensional case with 10 CDS contracts (see the
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bottom panels in Table 2). Figure 6 completes these results by showing the LA, FT1
and FT standard errors computed for different levels of nonlinearity and different
dimensions.

Summarizing, in the DGC model, the PHL is not practical. The FT scheme based
on the partially reduced TVA BSDE (II) gives an efficient way of estimating the
TVA. The nonlinear correction with respect to the linear approximations (14) or
(15) amounts up to 5% in relative terms, depending on the unsecured borrowing
spread λ̄ .

Table 2 LA, FT1 and FT estimates: 1 CDS (top) and 10 CDSs (bottom), with parameters λ̄ = 0%,
ρ = 0.8 (left) and λ̄ = 3%, ρ = 0.6 (right).

Method TVA 95% CI Rel. SE
LA 0.65 [0.57,0.73] 6.08 %
FT1 0.61 [0.59,0.63] 1.66%
FT 0.60 [0.58,0.62] 1.64 %

Method TVA 95% CI Rel. SE
LA 0.66 [0.60,0.72] 4.39%
FT1 0.62 [0.59,0.64] 1.96%
FT 0.60 [0.58,0.63] 1.84%

Method TVA 95% CI Rel. SE
LA 6.17 [5.43,6.92] 6.03%
FT1 6.24 [5.77,6.72] 3.78%
FT 6.17 [5.66,6.68] 4.15%

Method TVA 95% CI Rel. SE
LA 6.81 [6.16,7.45] 4.76%
FT1 7.82 [7.39,8.25] 2.73%
FT 6.99 [6.67,7.31] 2.28%
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Fig. 6 The % relative standard errors of the different schemes do not explode with the level of
nonlinearity represented by the unsecured borrowing spread λ̄ . Left: 1 CDS. Middle: 10 CDSs.
Right: the % relative standard errors of the different schemes (LA, FT1, FT in figures) do not
explode with the number of names (λ̄ = 100 bp, ρ = 0.6).
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6.2 Numerical results in the DMO model

In the DMO model, the FT scheme (18) for the fully reduced BSDE (23) can be
implemented through following steps:

1. Simulate the time ηY of each (individual or joint) shock following an independent
exponential law of parameter γY , Y ∈Y , then retrieve the τi through the formula
(41).

2. Draw a time ζ1 following an exponential law of parameter µ . If ζ1 < T , compare
the default time of each name with ζ1 to obtain the reduced Markov factor X̃ζ1

as
of (42) and in turn f̃ζ1

as of (45)-(46), then go to Step 3. Otherwise stop.
3. Draw a second time ζ2 following an independent exponential law of parameter

µ . If ζ1+ζ2 < T , compare the default time τi of each name with ζ1+ζ2 to obtain
the Markov factor X̃ζ1+ζ2

and f̃ζ1+ζ2
then go to Step 4. Otherwise stop.

4. Draw a third time ζ3 following an independent exponential law of parameter µ .
If ζ1 +ζ2 +ζ3 < T , compare the default time of each name with ζ1 +ζ2 +ζ3 to
obtain the Markov factor X̃ζ1+ζ2+ζ3

and f̃ζ1+ζ2+ζ3
.

We can also consider the PHL scheme (31) based on the partially reduced BSDE
(II) with

D = {x = (xY )Y∈Y ∈ {0,1}Y such that xY = 1 for Y ∈ Y•}.

To simulate the random tree T in (31), we follow the approach sketched before
(31) where, in order to evolve X according to the DMO generator A during a time
interval ζ , a particle born from a node x = ( jY )Y∈Y ∈ {0,1}Y at time t, all one
needs is, for each Y such that jY = 1, draw an independent exponential random
variable ηY of parameter γY and then set x′ = ( jY1[0,ηY )(ζ ))Y∈Y . Rephrasing in
more algorithmic terms:

1. To simulate the random tree T under the expectation in (31), we repeat the fol-
lowing step (generation of particles, or segments between consecutive nodes of
the tree) until a generation of particles dies without children:

For each node (t,x = ( jY )Y∈Y ,k) issued from the previous generation of particles (start-
ing with the root-node (0,X0,k = 1)), for each of the k new particles, indexed by l, issued
from that node, simulate an independent exponential random variable ζl and set

(t ′l ,x
′
l ,k
′
l) = (t +ζl ,( jY1[0,η l

Y )
(ζl))Y∈Y ,1x′l∈D

νl),

where, for each l, the η l
Y are independent exponential-γY random draws and νl is an in-

dependent draw in the finite set {0,1, · · · ,d}with some fixed probabilities p0, p1, . . . , pd .

2. To compute the random variable Φ under the expectation in (31), we loop over
the nodes of the tree T thus constructed (if T ⊂ [0,T ]×D , otherwise Φ = 0 in
the first place) and we form the product in (31), where the āk(t,x) are retrieved
as in (30).
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The PHL schemes (34) based on the full BSDE (I) or (36) based on the fully reduced
BSDE (III) can be implemented along similar lines.

We perform TVA computations in a DMO model with n = 120, for individual
shock intensities taken as γ{i} = 10−4× (100+ i) (increasing from ∼ 100 bps to
220 bps as i increases from 1 to 120) and four nested groups of common shocks
I1 ⊂ I2 ⊂ I3 ⊂ I4, respectively consisting of the riskiest 3%, 9%, 21% and 100%
(i.e. all) names, with respective shock intensities γI1 = 20 bp, γI2 = 10 bp, γI3 = 6.67
bp and γI4 = 5 bp. The counterparty (resp. the bank) is taken as the eleventh (resp.
tenth) safest name in the portfolio. In the model thus specified, we consider CDO
tranches with upfront payment, i.e. credit protection bought by the bank from the
counterparty at time 0, with nominal 100 for each obligor, maturity T = 2 years
and attachment (resp. detachment) points are 0%, 3% and 14% (resp. 3%, 14%
and 100%). The respective value of P0 (upfront payment) for the equity, mezzanine
and senior tranche is 229.65, 5.68 and 2.99. Accordingly, the ranges of approxi-
mation chosen for pol(y) ≈ y+ in the respective PHL schemes are 250, 200 and
10. We use polynomial approximation of order d = 4 with (p0, p1, p2, p3, p4) =
(0.5,0.3,0.1,0.09,0.01). We set µ = 0.1 in all PHL schemes and µ = 2/T = 0.2 in
all FT schemes.

Figure 7 shows the TVA computed by the FT scheme (23) based on the fully
reduced BSDE (III), for different levels of nonlinearity (unsecured borrowing basis
λ̄ ). We observe that, in all cases, the third order term is negligible. Hence, in fur-
ther FT computations, we only compute the orders 1 (linear part) and 2 (nonlinear
correction). Table 3 compares the results of the above FT scheme (23) based on the
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Fig. 7 TVA on CDO tranches with 120 underlying names computed by FT scheme of order 1 to
3 for different levels of nonlinearity (unsecured borrowing basis λ̄ ). Left: Equity tranche. Middle:
Mezzanine tranche. Right: Senior Tranche.

fully reduced BSDE (III) with those of the PHL schemes (36) based on (III) again
(P̃HL in the tables), (31) based on the partially reduced BSDE (II) (PHL in the ta-
bles) and (34) based on the full BSDE (I) (PHL in the tables), for the three CDO
tranches and two sets of parameters. The three PHL schemes are of course slightly
biased, but the first two, based on the BSDEs with null terminal condition (III) or
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Fig. 8 Analog of Fig. 5 for the CDO tranche of Fig. 7 in the DMO model (λ̄ = 0.01).

(II), exhibit much less variance than the third one, based on the full BSDE with ter-
minal condition ξ . This is also visible in Figure 9 (note the different scales of the y
axes going from left to right in the picture), which also shows that, for any of these
schemes, the relative standard errors do not explode with the level of nonlinearity or
the number of reference names in the CDO (the results for the PHL scheme are not
shown on the figure as very similar to those of the P̃HL scheme). In comparing the
TVA values on the left and the right hand side of Table 3, we see that the intensities
of the common shocks, which play a role similar to the correlation ρ in the DGC
model, have a more important impact on the higher tranches (mezzanine and senior
tranche), whereas the equity tranche is more sensitive to the level of the unsecured
borrowing spread λ̄ .

7 Conclusion

Under mild assumptions, three equivalent TVA BSDEs are available. The original
“full” BSDE (I) is stated with respect to the full model filtration G and the original
pricing measure Q. It does not involve the intensity γ of the counterparty first-to-
default time τ. The partially reduced BSDE (II) is also stated with respect to (G ,Q)
but it involves both τ and γ . The fully reduced BSDE (III) is stated with respect
to a smaller “reference filtration” F and it only involves γ. Hence, in principle,
the full BSDE (I) should be preferred for models with a “simple” τ whereas the
fully reduced BSDE (III) should be preferred for models with a “simple” γ . But,
in nonimmersive setups, the fully reduced BSDE (III) is stated with respect to a
modified probability measure P. Even though switching from (G ,Q) to (F ,P) is
transparent in terms of the generator of related Markov factor processes, this can
be an issue in situations where the Markov structure is important in the theory to
guarantee the validity of the numerical schemes, but is not really practical from an
implementation point of view. This is for instance the case with the credit portfolio
models that we use for illustrative purposes in our numerics, where the Markov
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Table 3 FT, PHL, PHL and P̃HL schemes applied to the equity (top), mezzanine (middle) and
senior (bottom) tranche, for the parameters λ̄ = 0%, λI j = 60bp/ j (left) or λ̄ = 3%, λI j = 20bp/ j
(right).

Method TVA 95% CI Rel. SE
FT 3.13 [3.10 , 3.16] 0.48 %

P̃HL 3.07 [2.87 , 3.28] 3.35 %
PHL 3.16 [2.94 , 3.37] 3.37 %
PHL 2.53 [2.13 , 2.94] 8.02%

Method TVA 95% CI Rel. SE
FT 9.08 [ 9.00 , 9.16] 0.46 %

P̃HL 9.05 [ 8.40 , 9.70] 3.58 %
PHL 9.28 [8.63 , 9.94] 3.51 %
PHL 12.59 [6.92 , 18.27] 22.54%

Method TVA 95% CI Rel. SE
FT 6.43 [6.33 , 6.53] 0.75 %

P̃HL 6.34 [5.93 , 6.75 ] 3.22 %
PHL 6.34 [5.93 , 6.75] 3.25 %
PHL 4.86 [2.84 , 6.89] 20.82%

Method TVA 95% CI Rel. SE
FT 2.29 [2.25 , 2.32] 0.77 %

P̃HL 2.51 [2.35 , 2.67] 3.17 %
PHL 2.68 [2.52 , 2.85] 3.12 %
PHL 1.93 [0.79 , 3.08] 29.57%

Method TVA 95% CI Rel. SE
FT 5.32 [5.24 , 5.40] 0.75 %

P̃HL 5.24 [4.90 , 5.58] 3.22 %
PHL 5.25 [4.90 , 5.58] 3.25 %
PHL 4.01 [2.32 , 5.70] 21.03%

Method TVA 95% CI Rel. SE
FT 1.83 [1.80 , 1.86] 0.78 %

P̃HL 1.80 [1.69 , 1.92] 3.13 %
PHL 1.87 [1.75 , 1.99] 3.11 %
PHL 1.36 [0.41 , 2.31] 35.05%

structure that emerges from the dynamic copula model is too heavy and it’s only the
copula features that can be used in the numerics—copula features under the original
stochastic basis (G ,Q), which do not necessarily hold under a reduced basis (F ,P)
(especially when P 6=Q). As for the partially reduced BSDE (II), as compared with
the full BSDE (I), its interest is its null terminal condition, which is key for the
FT scheme as recalled below. But of course (II) can only be used when one has an
explicit formula for γ .

For nonlinear and very high-dimensional problems such as counterparty risk on
credit derivatives, the only feasible numerical schemes are purely forward simu-
lation schemes, such as the linear Monte Carlo expansion of Fujii and Takahashi
(2012a,2012b) or the branching particles scheme of Henry-Labordère (2012), re-
spectively dubbed “FT scheme” and “PHL scheme” in the paper. In our setup, the
PHL scheme involves a nontrivial and rather sensitive fine-tuning for finding a poly-
nomial in ϑ that approximates the terms (Pt −ϑ)± in f vat(ϑ) in a suitable range
for ϑ . This fine-tuning requires a preliminary knowledge on the solution obtained
by running another approximation (linear approximation or FT scheme) in the first
place. Another limitation of the PHL scheme in our case is that it is more demand-
ing than the FT scheme in terms of the structural model properties that it requires.
Namely, in our credit portfolio problems, both a Markov structure and a dynamic
copula are required for the PHL scheme. But, whereas a “weak” dynamic copula



28 Stéphane Crépey and Tuyet Mai Nguyen

0% 1% 2% 3%
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

λ̄

%
 r

e
l 
S

E

Relative SE of different tranches with different borrowing spreads

 

 

eq

mezz

sen

0% 1% 2% 3%
3.1

3.15

3.2

3.25

3.3

3.35

3.4

3.45

3.5

3.55

3.6

λ̄

%
 r

e
l 
S

E

Relative SE of different tranches with different borrowing spreads

 

 

eq

mezz

sen

0% 1% 2% 3%
20

25

30

35

40

45

50

λ̄

%
 r

e
l 
S

E

Relative SE of different tranches with different borrowing spreads

 

 

eq

mezz

sen

30 60 90 120
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of obligors

%
 r

e
l 
S

E

Relative SE of different tranches with different dimensions

 

 

eq

mezz

sen

30 60 90 120
3.1

3.15

3.2

3.25

3.3

3.35

3.4

3.45

3.5

3.55

3.6

Number of obligors

%
 r

e
l 
S

E

Relative SE of different tranches with different dimensions

 

 

eq

mezz

sen

30 60 90 120
5

10

15

20

25

30

35

40

45

Number of obligors

%
 r

e
l 
S

E

Relative SE of different tranches with different dimensions

 

 

eq

mezz

sen

Fig. 9 Bottom: The % relative standard errors of the different tranches do not explode with the
number of names (λ̄ = 100 bp). top: The % relative standard errors of the different tranches do not
explode with the level of nonlinearity represented by the unsecured borrowing spread λ̄ (n = 120).
Left: FT scheme. Middle: P̃HL scheme. Right: PHL scheme.

structure in the sense of simulation and forward pricing by copula means is suf-
ficient for the FT scheme, a dynamic copula in the stronger sense that the copula
structure is preserved in the future is required in the case of the PHL scheme. This
strong dynamic copula property is satisfied by our common-shock model but not in
the Gaussian copula model. In conclusion, the FT schemes applied to the partially
or fully reduced BSDEs (II) or (III) (a null terminal condition is required so that the
full BSDE (I) is not eligible for this scheme) appears as the method of choice on
these problems.

An important message of the numerics is that, even for realistically high levels
of nonlinearity, i.e. an unsecured borrowing spread λ̄ = 3%, the third order FT cor-
rection was always found negligible and the second order FT correction less than
5% to 10% of the first order, linear FT term. In conclusion, a first order FT term
can be used for obtaining “the best linear approximation” to our problem, whereas
a nonlinear correction, if wished, can be computed by a second order FT term.

Acknowledgements This research benefited from the support of the “Chair Markets in Transi-
tion” under the aegis of Louis Bachelier laboratory, a joint initiative of École polytechnique, Uni-
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