Identifiability of an X-Rank Decomposition of Polynomial Maps - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Applied Algebra and Geometry Année : 2017

Identifiability of an X-Rank Decomposition of Polynomial Maps

Yang Qi
  • Fonction : Auteur
  • PersonId : 1033248

Résumé

In this paper, we study a polynomial decomposition model that arises in problems of system identification, signal processing and machine learning. We show that this decomposition is a special case of the X-rank decomposition --- a powerful novel concept in algebraic geometry that generalizes the tensor CP decomposition. We prove new results on generic/maximal rank and on identifiability of a particular polynomial decomposition model. In the paper, we try to make results and basic tools accessible for general audience (assuming no knowledge of algebraic geometry or its prerequisites).

Dates et versions

hal-01763858 , version 1 (11-04-2018)

Identifiants

Citer

Pierre Comon, Yang Qi, Konstantin Usevich. Identifiability of an X-Rank Decomposition of Polynomial Maps. SIAM Journal on Applied Algebra and Geometry, 2017, 1 (1), pp.388-414. ⟨10.1137/16M1108388⟩. ⟨hal-01763858⟩
207 Consultations
0 Téléchargements

Altmetric

Partager

More