Monochromatic identities for the Green function and uniqueness results for passive imaging - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Applied Mathematics Année : 2018

Monochromatic identities for the Green function and uniqueness results for passive imaging

Résumé

For many wave propagation problems with random sources it has been demonstrated that cross correlations of wave fields are proportional to the imaginary part of the Green function of the underlying wave equation. This leads to the inverse problem to recover coefficients of a wave equation from the imaginary part of the Green function on some measurement manifold. In this paper we prove, in particular, local uniqueness results for the Schrödinger equation with one frequency and for the acoustic wave equation with unknown density and sound speed and two frequencies. As the main tool of our analysis, we establish new algebraic identities between the real and the imaginary part of Green's function, which in contrast to the well-known Kramers-Kronig relations involve only one frequency.
Fichier principal
Vignette du fichier
greenart3.pdf (372.04 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01761227 , version 1 (08-04-2018)

Identifiants

Citer

Alexey Agaltsov, Thorsten Hohage, Roman Novikov. Monochromatic identities for the Green function and uniqueness results for passive imaging. SIAM Journal on Applied Mathematics, 2018, 78 (5), pp.2865-2890. ⟨10.1137/18M1182218⟩. ⟨hal-01761227⟩
258 Consultations
465 Téléchargements

Altmetric

Partager

More