Underdetermined Reverberant Blind Source Separation: Sparse Approaches for Multiplicative and Convolutive Narrowband Approximation - Archive ouverte HAL
Article Dans Une Revue IEEE/ACM Transactions on Audio, Speech and Language Processing Année : 2019

Underdetermined Reverberant Blind Source Separation: Sparse Approaches for Multiplicative and Convolutive Narrowband Approximation

Séparation aveugle de source réverbérante: les approches parcimonieuses pour l'approximation multiplicative et convolutive

Fangchen Feng
  • Fonction : Auteur
  • PersonId : 1030403
Matthieu Kowalski

Résumé

We consider the problem of blind source separation for underdetermined convolutive mixtures. Based on the multiplicative narrowband approximation in the time-frequency domain with the help of Short-Time-Fourier-Transform (STFT) and the sparse representation of the source signals, we formulate the separation problem into an optimization framework. This framework is then generalized based on the recently investigated convolutive narrowband approximation and the statistics of the room impulse response. Algorithms with convergence proof are then employed to solve the proposed optimization problems. The evaluation of the proposed frameworks and algorithms for synthesized and live recorded mixtures are illustrated. The proposed approaches are also tested for mixtures with input noise. Numerical evaluations show the advantages of the proposed methods.
Fichier principal
Vignette du fichier
manuscript_FK.pdf (629.23 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01760968 , version 1 (06-04-2018)

Identifiants

Citer

Fangchen Feng, Matthieu Kowalski. Underdetermined Reverberant Blind Source Separation: Sparse Approaches for Multiplicative and Convolutive Narrowband Approximation. IEEE/ACM Transactions on Audio, Speech and Language Processing, 2019, 27 (2), pp.442-456. ⟨10.1109/taslp.2018.2881925⟩. ⟨hal-01760968⟩
479 Consultations
456 Téléchargements

Altmetric

Partager

More