Comparison of Mean Hitting Times for a Degree-Biased Random Walk - Archive ouverte HAL
Article Dans Une Revue Discrete Applied Mathematics Année : 2014

Comparison of Mean Hitting Times for a Degree-Biased Random Walk

Antoine Gerbaud
  • Fonction : Auteur
  • PersonId : 858318
Karine Altisen
Stéphane Devismes

Résumé

Consider the random walk on graphs such that, at each step, the next visited vertex is a neighbor of the current vertex, chosen with probability proportional to the inverse of the square root of its degree. On one hand, for every graph with n vertices, the maximal mean hitting time for this degree-biased random walk is asymptotically dominated by n 2. On the other hand, the maximal mean hitting time for the simple random walk is asymptotically dominated by n 3. Yet, in this article, we exhibit for each positive integer n: • A graph of size n with maximal mean hitting time strictly smaller for the simple random walk than for the degree-biased one. • A graph of size n with mean hitting time of a so called root vertex strictly smaller for the simple random walk than for the degree-biased one.
Fichier principal
Vignette du fichier
deg_biased.pdf (733.56 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01759847 , version 1 (05-04-2018)

Identifiants

Citer

Antoine Gerbaud, Karine Altisen, Stéphane Devismes, Pascal Lafourcade. Comparison of Mean Hitting Times for a Degree-Biased Random Walk. Discrete Applied Mathematics, 2014, 170, pp.104 - 109. ⟨10.1016/j.dam.2014.01.021⟩. ⟨hal-01759847⟩
113 Consultations
72 Téléchargements

Altmetric

Partager

More