THIN TIMES AND RANDOM TIMES' DECOMPOSITION - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

THIN TIMES AND RANDOM TIMES' DECOMPOSITION

Résumé

The paper studies thin times which are random times whose graph is contained in a countable union of the graphs of stopping times with respect to a reference filtration F. We show that a generic random time can be decomposed into thin and thick parts, where the second is a random time avoiding all F-stopping times. Then, for a given random time τ , we introduce F τ , the smallest right-continuous filtration containing F and making τ a stopping time, and we show that, for a thin time τ , each F-martingale is an F τ-semimartingale, i.e., the hypothesis (H) for (F, F τ) holds. We present applications to honest times, which can be seen as last passage times, showing classes of filtrations which can only support thin honest times, or can accommodate thick honest times as well.
Fichier principal
Vignette du fichier
ACJ_march2018.pdf (373.56 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01759574 , version 1 (05-04-2018)

Identifiants

  • HAL Id : hal-01759574 , version 1

Citer

Anna Aksamit, Tahir Choulli, Monique R Jeanblanc. THIN TIMES AND RANDOM TIMES' DECOMPOSITION. 2018. ⟨hal-01759574⟩
285 Consultations
192 Téléchargements

Partager

More