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THIN TIMES AND RANDOM TIMES’ DECOMPOSITION

ANNA AKSAMIT, TAHIR CHOULLI AND MONIQUE JEANBLANC

Abstract. The paper studies thin times which are random times whose graph

is contained in a countable union of the graphs of stopping times with respect to a

reference filtration F. We show that a generic random time can be decomposed

into thin and thick parts, where the second is a random time avoiding all F-

stopping times. Then, for a given random time τ , we introduce Fτ , the smallest

right-continuous filtration containing F and making τ a stopping time, and we

show that, for a thin time τ , each F-martingale is an Fτ -semimartingale, i.e.,

the hypothesis (H′) for (F,Fτ ) holds. We present applications to honest times,

which can be seen as last passage times, showing classes of filtrations which can

only support thin honest times, or can accommodate thick honest times as well.

1. Introduction

The paper studies the class of thin times in an enlargement of filtration frame-

work. The concept naturally fits, and complements, the studies of random times

and progressive enlargement of filtrations. A random time defined on a filtered

probability space (Ω,G,F,P) with F = (Ft)t≥0, is a random variable with values

in [0,∞]. In the literature of enlargement on filtration, e.g. Mansuy and Yor [20]

and Nikeghbali [22], it is common to assume that the random time τ avoids all F-

stopping times, i.e., P(τ = T <∞) = 0 for any F-stopping time T . The motivation

behind our work is to explore what happens if this condition fails. In Definition

2.1 we introduce thin times which satisfy the opposite property, i.e., their graph is
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contained in a countable union of graphs of F-stopping times. The given name is

motivated by the fact that the graph of a thin random time is contained in a thin

set (see [13, Chapter I, Definition 1.30] for definition and main properties of thin

sets). The notion of thin time was mentioned, but not developed, for the first time

in Dellacherie and Meyer [7] under the name arlequine random variable referring to

the costume of the Harlequin which is made of patches of different colors. On the

other hand we also work with thick times which are introduced in Definition 5.1,

and satisfy the above avoidance condition, i.e., and the graph of a thick random

time does not intersect any thin set (i.e., the intersection is an evanescent set). In

Section 2, we show the first results on thin times. Our study strongly relies on the

notion of dual optional projection and other processes linked to the general theory

of stochastic processes, in particular, to the enlargement of filtration theory.

Since their introduction in the 1980’s, enlargements of filtrations have remained

an important tool and field of study in the theory of stochastic processes. In fact

the theory has seen its second youth recently with revised interest sparked by

applications in mathematical finance. These include, in particular, credit risk and

modelling of asymmetry of information, where one considers a financial market

where different agents have different levels of information.

Enlargement of filtration theory, to which we contribute here, focuses on the

properties of stochastic processes under a change of filtration. The behaviour of

(semi)martingales under a suitable change of filtration may be seen as parallel to

absolutely continuous change of measure and Girsanov’s theorem (see [12, 26, 28]).

It is of a fundamental interest to provide new classes of enlargements under which

the semimartingale property is stable.

Thin times form a new class of random times which possesses this property

under progressive enlargement. Recall that for a random time τ , Fτ := (F τt )t≥0

denotes the filtration F progressively enlarged with τ , and is given by

(1) F τt :=
⋂
s>t

(Fs ∨ σ(τ ∧ s)) for any t ≥ 0.

The fundamental question in the enlargement of filtration theory is if all F-martingales

remain Fτ -semimartingales. If the latter property is satisfied we say that the

hypothesis (H′) holds for (F,Fτ ), in which case we are interested in the Fτ -
semimartingale decomposition of F-martingales. The main result in Section 3

is Theorem 3.2 where we establish the hypothesis (H′) for thin random times and

give a corresponding semimartingale decomposition. It extends a previous result
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by Jeulin [17, Lemma (4,11)] which deals with countably valued random times.

Instead we choose countably many F-stopping times which are already captured

in the reference filtration F. Jeanblanc and Le Cam [15] have established that

the hypothesis (H′) holds for a progressive enlargement by an initial time, i.e., a

random time which satisfies absolute continuity hypothesis introduced by Jacod

[12] (see also [17, Theorem 3,2] and [21]). Conceptually, we may see Theorem 3.2

as a different way of adopting results of Jacod to progressive setting and obtaining

qualitatively different results.

In Section 5 we define the decomposition of a random time into thick and thin

parts which we call the thin-thick decomposition. The thin-thick decomposition

is congruent with the decomposition of a stopping time into accessible and totally

inaccessible parts. One of the main results in this section, Theorem 5.5, says that

any random time τ admits a unique thin-thick decomposition and characterizes its

thin and thick components in terms of the dual optional projection of the indicator

process 11[[τ,∞[[. In Section 5 we also show the significance of thin-thick decompo-

sition for the hypothesis (H′) and immersion in the context of the progressive

enlargement of filtration.

In Section 6 we turn to honest times which constitute an important and well

studied class of random times (see Barlow [3] and Jeulin [17]) and can be suitably

represented as last passage times. Adopting the notion of jumping filtration from

Jacod and Skorokhod [14] we show in Theorem 6.8, which is the main result

of this section, that such a filtration can only support honest times which are

thin. That includes the compound Poisson process filtration. In [14] the link

between jumping filtration and finite variation martingales is established; further

developments related to purely discontinuous martingale filtrations are presented

in Hannig [10]. In Theorem 6.8 we also show that there exists a thick time in

the filtration which can accommodate a non-constant continuous martingale. In

Section 6 we also discuss two examples of thin honest times: the last passage

time at a barrier a of a compound Poisson process and an example based on an

approximation of a Brownian local time.

2. A definition and some properties of thin times

Let (Ω,G,F,P) be a filtered probability space, where F := (Ft)t≥0 denotes a

filtration satisfying the usual conditions, and such that F∞ :=
⋃
t>0Ft ⊂ G. For

any càdlàg process X we denote by X− the left-continuous version of X, by ∆X
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the jump of X and by X∞ the limit limt→∞Xt if it exists. The process X is said

to be increasing if, for almost all ω, it satisfies Xt(ω) ≥ Xs(ω) for all t ≥ s. A

random variable is said to be positive if it has values in [0,∞). We denote by G •X

the stochastic integral of a predictable process G w.r.t. a semimartingale X, when

this integral is well defined.

Consider a random time τ , i.e., a [0,∞]-valued G-measurable random variable.

Note that a random time τ is not necessarily F∞-measurable. For a random

time τ , we denote by [[τ ]] := {(ω, t) ⊂ Ω × R+ : τ(ω) = t} its graph. Let us

recall, following [17], some useful processes associated with the pair (F, τ). For the

process A := 11[[τ,∞[[, we denote by Ap its F-dual predictable projection and by Ao

its F-dual optional projection (see Appendix A). By an abuse of language, Ao is

also called the dual optional projection of the random time τ . We also define two

F-supermartingales Z and Z̃ as the optional projections of processes 1 − A and

1− A− respectively, i.e.,

Zt := o
[
11[[0,τ [[

]
t

= P(τ > t|Ft) and Z̃t := o
[
11[[0,τ ]]

]
t

= P(τ ≥ t|Ft).

Since the dual optional projection Ao will play a crucial role in the paper, we recall

two equalities where it appears (see [17, Chapitre IV, section 1]):

(2) Ao = m− Z and ∆Ao = Z̃ − Z ,

where m is a BMO F-martingale. Furthermore, Z̃ = Z− + ∆m.

The following definition contains the leading idea of the paper. It introduces a

class of random times using a criterion based on F-stopping times w.r.t. a reference

filtration.

Definition 2.1. A random time τ is called an F-thin time if its graph [[τ ]] is

contained in an F-thin set, i.e., if there exists a sequence of F-stopping times

(Tn)∞n=1 with disjoint graphs such that [[τ ]] ⊂
⋃∞
n=1[[Tn]].

Let T0 := ∞. We say that the sequence (Tn)n≥0 exhausts the F-thin time τ or

that (Tn)n≥0 is an F-exhausting sequence of the F-thin time τ .

We say that the family of sets (Cn)n≥0, given by C0 := {τ = ∞} and Cn :=

{τ = Tn <∞} for n ≥ 1, is an F-partition of the F-thin time τ .

We say that the family of bounded càdlàg F-martingales (zn)n≥0 given by its

terminal values P(Cn|F∞), namely znt := P(Cn|Ft), is a martingale family of the

thin time τ .
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If this is clear from the context we shall simply say that τ is a thin time instead

of saying that τ is an F-thin time etc. Note that a thin time τ is built from F-

stopping times, i.e., τ =
∑

n≥0 Tn11Cn where (Tn)n≥0 is one exhausting sequence

and (Cn)n≥0 is its partition. On the other hand, given a sequence (Tn)n≥0 of F-

stopping times with disjoint graphs such that T0 = ∞ and a partition (Cn)n≥0 of

Ω, the random time τ defined as τ :=∞11C0 +
∑

n≥1 Tn11Cn is thin.

Let us also remark that an exhausting sequence (Tn)n≥0 of a thin time is not

unique, however the properties of a thin time do not depend on the specific choice

of an exhausting sequence. The following proposition combines two exhausting

sequence a given thin time.

Proposition 2.2. Let τ be a thin time with an exhausting sequence (Tn)n≥0 and

a partition (Cn)n≥0. Suppose that (Sn)n≥0 and (Bn)n≥0 are as well an exhausting

sequence and a partition of τ . Then, (U0, (Un,m)n≥1,m≥1), defined as U0 :=∞ and

Un,m := Tn11{Tn=Sm}+∞11{Tn 6=Sm} for n ≥ 1 and m ≥ 1, is an exhausting sequence

of τ and (D0, (Dn,m)n≥1,m≥1) defined as D0 := {τ =∞} and Dn,m := Cn ∩Bm for

n ≥ 1 and m ≥ 1, is the corresponding partition of τ .

Proof. Firstly note that Un,m is a stopping time for any pair n ≥ 1 and m ≥ 1

since {Tn = Sm} ∈ FTn∧Sm . Secondly note that the following identity holds:

τ =∞11{τ=∞} +
∑
n≥1

∑
m≥1

Tn11{τ=Tn=Sm<∞} =∞11D0 +
∑
n≥1

∑
m≥1

Un,m11{τ=Un,m<∞}.

Hence it remains to show that (Un,m)n≥1,m≥1 have disjoint graphs which follows by

observing that the sets

[[Un,m]] ∩ [[Uk,l]] ⊂ [[Tn]] ∩ [[Tk]] and [[Un,m]] ∩ [[Uk,l]] ⊂ [[Sm]] ∩ [[Sl]]

are evanescent if n 6= k or m 6= l. �

Thin times, unlike other classes of random times, possess many stability prop-

erties as described in the following remark.

Remark 2.3. (a) Let Q be absolutely continuous w.r.t. P and F̃ be the filtration

F completed with Q-null sets. Then an F-thin time is an F̃-thin time since F ⊂ F̃.

In other words thin times are invariant w.r.t. an absolutely continuous change of

measure.

(b) Let G be such that F ⊂ G. Then any F-thin time is a G-thin time since any

F-stopping time is a G-stopping time. In other words, thin times are stable under
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filtration enlargement.

(c) Let τ and σ be two F-thin times with exhausting sequences (Tn)n≥0 and (Sn)n≥0

respectively. Then τ ∧ σ and τ ∨ σ are also F-thin times since

[[τ ∧ σ]] ⊂
⋃
n≥1

[[Tn]] ∪
⋃
n≥1

[[Sn]] and [[τ ∨ σ]] ⊂
⋃
n≥1

[[Tn]] ∪
⋃
n≥1

[[Sn]].

The following theorem provides a useful characterization of thin time based on

its F-dual optional projection.

Theorem 2.4. A random time is a thin time if and only if its dual optional

projection is a pure jump process.

Proof. For any sequence (Sn)n≥1 of F-stopping times with disjoint graphs, we have

∞∑
n=1

P(τ = Sn <∞) =
∞∑
n=1

E
[
∆AoSn11{Sn<∞}

]
.

Since by definition of the dual optional projection E[Ao∞] = P(τ < ∞), and

using the fact that Ao is an increasing process, we conclude that the sequence

(Tn)n≥0 with T0 = ∞ is an exhausting sequence of τ , i.e., satisfies the condi-

tion
∑∞

n=1 P(τ = Tn < ∞) = P(τ < ∞), if and only if it satisfies the condition

E[Ao∞] =
∑∞

n=1 E[∆AoTn11{Tn<∞}]. In other words, τ is a thin time if and only if Ao

is a pure jump process. �

The next result gives the supermartingales Z and Z̃ of a thin time and their

decompositions into an F-martingale m and the increasing process Ao in terms of

an exhausting sequence and martingale family of τ . This will be useful to check

certain properties of thin (honest) times (we refer the reader to Sections 4 and 6).

Proposition 2.5. Let τ be a thin time with exhausting sequence (Tn)n≥0, partition

(Cn)n≥0 and martingale family (zn)n≥0. Then:

(a) zn > 0 and zn− > 0 a.s. on Cn for each n ≥ 0,

(b) 1− Zτ > 0 a.s. on {τ <∞},
(c) Z̃t =

∑∞
n=0 11{t≤Tn}z

n
t , Zt =

∑∞
n=0 11{t<Tn}z

n
t , A

o
t =

∑∞
n=1 11{t≥Tn}z

n
Tn

and

mt =
∑∞

n=0 z
n
t∧Tn .

Proof. (a) Define, for any n ≥ 0, the F-stopping time

(3) Rn := inf{t ≥ 0 : znt = 0}.
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As zn is a positive càdlàg martingale, by [25, Proposition (3.4) p.70], it vanishes

on [[Rn,∞[[. Since zn is bounded, zn∞ exists and:

{Rn <∞} =

{
inf
t≥0

znt = 0

}
= {zn∞ = 0}.

Moreover, the equality 0 = E[zn∞11{zn∞=0}] = E[11Cn11{zn∞=0}] implies that Cn∩{zn∞ =

0} is a null set, so as well Cn ∩ {inft z
n
t = 0} is a null set. We obtain that zn > 0

and zn− > 0 a.s. on Cn.

(b) We have Zτ11{τ<∞} =
∑∞

n=1 11CnZTn and, on {Tn <∞}, we have

1− ZTn = P(τ ≤ Tn|FTn) ≥ P(τ = Tn|FTn) = znTn .

From part (a), this implies that 1− Zτ > 0 a.s. on {τ <∞}.
(c) Deriving the form of Z and Z̃ is straightforward. To compute Ao, note that

for any F-optional process X, one has, setting Hn = 11[[Tn,∞[[,

E
[∫

[0,∞)

XsdA
o
s

]
= E

[∫
[0,∞)

XsdAs

]
= E[Xτ11{τ<∞}] =

∞∑
n=1

E
[
XTnz

n
Tn11{Tn<∞}

]
=

∞∑
n=1

E
[∫

[0,∞)

Xsz
n
s dH

n
s

]
.

The form of m follows by (2). �

The following result describes how, after a thin time, the conditional expecta-

tions with respect to elements of Fτ can be expressed in terms of the conditional

expectations with respect to elements of F. For an arbitrary random time, one is

able to express Fτ -conditional expectations in terms of F-conditional expectations

only strictly before τ (this result is often referred to as key lemma in enlargement

of filtration literature, see Lemma 3.1 in [9] and Section 3.1.1 in [4]). A powerful

property of thin times is that one can obtain this kind of result also after τ as

described below. It is crucial for results in Section 3.

Lemma 2.6. Let τ be a thin time with exhausting sequence (Tn)n≥0, partition

(Cn)n≥0 and martingale family (zn)n≥0. Then:

(a) The progressive enlargement of filtration F with τ , Fτ := (F τt )t≥0, defined

in (1) by F τt :=
⋂
u>tFu ∨ σ({τ ≤ s} : s ≤ u}, satisfies

F τt =
⋂
u>t

Fu ∨ σ(Cn ∩ {Tn ≤ s}, s ≤ u, n ≥ 1).
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(b) For any n ≥ 1 and any G-measurable integrable random variable X, we

have

E [X|F τt ] 11{t≥Tn}∩Cn = 11{t≥Tn}∩Cn
E [X11Cn|Ft]

znt
.

Proof. (a) The proof is based on monotone class theorem and we focus on a gen-

erator. The inclusion
⋂
u>tFu ∨ σ(Cn ∩ {Tn ≤ s}, s ≤ u, n ≥ 1) ⊂ F τt fol-

lows since τ and Tn are Fτ -stopping times, therefore {τ = Tn < ∞} ∈ F τTn and

{τ = Tn < ∞} ∩ {Tn ≤ s} ∈ F τs . The reverse inclusion is due to {τ ≤ s} =⋃∞
n=1Cn ∩ {Tn ≤ s}.
(b) By (a) and the monotone class theorem, for each G ∈ F τt there exists F ∈ Ft

such that, for any n ≥ 1,

(4) G ∩ {Tn ≤ t} ∩ Cn = F ∩ {Tn ≤ t} ∩ Cn.

Then, using the fact that Tn are F-stopping times, we have to show that

E
[
X11{t≥Tn}∩Cnz

n
t |F τt

]
= 11{t≥Tn}∩CnE

[
X11{t≥Tn}∩Cn |Ft

]
.

For any G ∈ F τt , we choose F ∈ Ft satisfying (4), and we obtain

E
[
X11{t≥Tn}∩Cn∩G z

n
t

]
= E

[
X11{t≥Tn}∩Cn∩F E [11Cn|Ft]

]
= E

[
11{t≥Tn}∩F E [11Cn|Ft]E [X11Cn|Ft]

]
= E

[
11{t≥Tn}∩Cn∩F E [X11Cn|Ft]

]
= E

[
11{t≥Tn}∩Cn∩G E [X11Cn|Ft]

]
which ends the proof, taking into account that znt > 0 on Cn. �

Corollary 2.7. It follows immediately that, for s ≤ t, n ≥ 1 and any G-measurable

integrable random variable X

E [X|F τt ] 11{s≥Tn}∩Cn = 11{s≥Tn}∩Cn
E [X11Cn|Ft]

znt
.

3. The hypothesis (H′) for thin times

One of the vital questions in the enlargement of filtration theory is whether all

semimartingales in the reference filtration remain semimartingales in an enlarged

filtration, i.e., whether the hypothesis (H′) holds. In progressive enlargement

setting there are only few classes of random times with this property, i.e., honest

times and random times satisfying Jacod’s absolutely continuous condition. In

this section we prove the hypothesis (H′) for the new class of random times i.e.,
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thin times. This contributes to and completes the existing theory in a relevant

way. Let us first recall the equivalent characterisations of the hypothesis (H′) (see

[17, page 12]).

Definition 3.1. Let F and G be two filtrations such that F ⊂ G. Then, the

hypothesis (H′) holds for (F,G) if any of the following equivalent conditions holds:

(a) any F-semimartingale is a G-semimartingale;

(b) any F-martingale is a G-semimartingale;

(c) any bounded F-martingale is a G-semimartingale.

Before formulating the result of this section we recall a vital result by Jacod (see

[17, Theorem 3,2] and [21]) on the hypothesis (H′) in the case of initial enlargement

with an atomic σ-field.

Let F C denote the initial enlargement of the filtration F with the atomic σ-field

C := σ(Cn, n ≥ 0) generated by a partition (Cn, n ≥ 0) of a thin time τ , i.e.,

(5) FCt :=
⋂
s>t

Fs ∨ σ(Cn, n ≥ 0).

For this case of enlargement, Jacod’s result says that the hypothesis (H′) holds for

(F,F C) and the decomposition of any F-martingale X as an F C-semimartingale is

(6) Xt = X̂t +
∑
n

11Cn

∫ t

0

1

zns−
d〈X, zn〉s,

where X̂ is an F C-local martingale and (zn)n≥0 is a martingale family of the thin

time τ , and the predictable bracket is computed in F.

Theorem 3.2. Let τ be a thin time. Then F ⊂ Fτ ⊂ F C and the hypothesis (H′)
is satisfied for (F,Fτ ). Moreover, for each Fτ -predictable and bounded process G

and each F-local martingale Y the stochastic integral X := G • Y exists and is an

Fτ -semimartingale with canonical decomposition

(7) Xt = X̂t +

∫ t∧τ

0

Gs

Zs−
d〈Y,m〉s +

∞∑
n=1

11Cn

∫ t

0

11{s>Tn}
Gs

zns−
d〈Y, zn〉s,

where X̂ is an Fτ -local martingale, and the predictable brackets are computed in F.

Proof. The fact that the hypothesis (H′) holds for (F,Fτ ) follows from (6) and

Stricker’s Theorem [24, Theorem 4, Chapter II] since Fτ ⊂ F C. To prove the
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decomposition result, let H be an Fτ -predictable bounded process. Then, [17,

Lemma (4,4)] implies that

Ht = 11{t≤τ}Jt + 11{τ<t}Kt(τ), t ≥ 0,

where J is an F-predictable bounded process and K : R+ × Ω × R+ → R is

P ⊗ B(R+)-measurable and bounded. Since τ is a thin time, we can rewrite the

process H as

Ht = Jt11{t≤τ} +
∞∑
n=1

11{Tn<t}Kt(Tn)11Cn .

Note that, since {t ≤ τ} ⊂ {Zt− > 0}, J can be chosen to satisfy Jt = Jt11{Zt−>0}

and, since Cn ⊂ {znt− > 0}, each process Kn
t := 11{Tn<t}Kt(Tn) being F-predictable

and bounded, Kn can be chosen to satisfy Kn
t = Kn

t 11{znt−>0}.

We denote by H1(F) the space of F-local martingales N s.t. E([N ]
1/2
∞ ) < ∞.

Let N be an H1(F)-martingale. Then the stochastic integrals J • N and Kn • N

are well defined and each of them is an H1(F)-martingale. For each n ≥ 0 and for

each bounded F-martingale N , by integration by parts, we have that

(8) E [11CnN∞] = E [[zn, N ]∞] = E [〈zn, N〉∞] .

Since N → E[11CnN∞] is a linear form, the duality (H1, BMO) implies that (8)

holds for any H1(F)-martingale N . Similarly, since m, given in (2), is a BMO(F)-

martingale, for any H1(F)-martingale N , the process 〈N,m〉 exists and we have

E[Nτ ] = E [[N,m]∞] = E [〈N,m〉∞] .

Therefore

E
[∫ ∞

0

HsdNs

]
=E

[∫ τ

0

JsdNs

]
+
∞∑
n=1

E
[
11Cn

∫ ∞
0

Kn
s dNs

]

=E
[∫ ∞

0

Jsd〈m,N〉s
]

+
∞∑
n=1

E
[∫ ∞

0

Kn
s d〈zn, N〉s

]
.

Then, since for any predictable finite variation process V , E[
∫∞

0
hsdVs] = E[

∫∞
0

phsdVs],

and Z− = p(1− A−), we deduce, taking care on the specific choice of J and K,

E
[∫ ∞

0

HsdNs

]
= E

[∫ ∞
0

Zs−
Zs−

11{Zs−>0}Jsd〈m,N〉s
]

+
∞∑
n=1

E
[∫ ∞

0

zns−
zns−

11{zns−>0}K
n
s d〈zn, N〉s

]
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= E
[∫ τ

0

1

Zs−
Jsd〈m,N〉s

]
+
∞∑
n=1

E
[
11Cn

∫ ∞
0

1

zns−
Kn
s d〈zn, N〉s

]
.

The assertion of the theorem follows as, for any s ≤ t and F ∈ F τs , the process

H = 11(s,t]11F is clearly Fτ -predictable. To end the proof, we recall that any local

martingale is locally in H1 (see [24, Theorem 51, Chapter IV]). �

Remark 3.3. Lemma (4,11) in [17], where the random time with countably many

values is considered, is a special case of Theorem 3.2. It corresponds to the situ-

ation of thin random time whose graph is included in countable union of constant

sections, i.e, [[τ ]] ⊂
⋃
n[[tn]] with [[tn]] = {(ω, tn) : ω ∈ Ω} and tn ∈ R.

We end this section with a second proof of Theorem 3.2 which is based on result

linking processes in Fτ and F C stated in Lemma 3.4.

Second proof of Theorem 3.2. Let X be a bounded F-martingale. Then, it is

enough to show that 11[[0,τ ]] • X and 11]]τ,∞[[ • X are two Fτ -semimartingales with

appropriate decompositions. By [17, Proposition (4,16)] 11[[0,τ ]] • X = X·∧τ is an

Fτ -semimartingale with the decomposition

Xt∧τ = X̂1
t +

∫ t∧τ

0

1

Zs−
d〈X,m〉s,

where X̂1 is an Fτ -local martingale. By Lemma 3.4 and Jacod’s result (6) it follows

that 11]]τ,∞[[ •X is an Fτ -semimartingale with decomposition

Xt −Xt∧τ = X̂2
t +

∞∑
n=1

11Cn

∫ t

0

11{s>Tn}
1

zns−
d〈X, zn〉s,

where X̂2 is an Fτ -local martingale. This completes the proof. �

Lemma 3.4. Let τ be a thin time and Y be a process such that Y = 11]]τ,∞[[ • Y .

Then:

(a) The process Y is an F C-(super, sub)martingale if and only if the process Y is

an Fτ -(super, sub)martingale.

(b) Let ϑ be an F C-stopping time. Then ϑ ∨ τ is an Fτ -stopping time.

(c) The process Y is an F C-local martingale if and only if the process Y is an

Fτ -local martingale.

Proof. (a) Note that the filtrations Fτ and F C are equal after τ , i.e., for each t and

for each set G ∈ FCt , there exists a set F ∈ F τt such that

(9) {τ ≤ t} ∩G = {τ ≤ t} ∩ F.
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To show (9), by monotone class theorem, it is enough to consider G = Cn and

to take F = Cn ∩ {τ ≤ t} which belongs to F τt as Cn ∈ F ττ by [11, Corollary

3.5]. That implies that the process 11]]τ,∞[[ • Y is Fτ -adapted if and only if it is

F C-adapted. The equivalence of (super-, sub-) martingale property comes from

(9).

(b) For each t we have {ϑ ∨ τ ≤ t} = {ϑ ≤ t} ∩ {τ ≤ t} ∈ F τt by (9).

(c) We combine the two previous points. �

4. Immersion for thin times

Immersion, also called the hypothesis (H) is a more restrictive hypothesis for

enlargement of filtration then the hypothesis (H′). Given F ⊂ G, we say that F is

immersed in G if any F-martingale is a G-martingale. The equivalent condition to

immersion, established in Theorem 3 in [5], says that for each t ≥ 0 and G ∈ L1(Gt)
it holds that E[G|Ft] = E[G|F∞]. Immersion does not hold for each thin time.

However, in the next proposition, an equivalent condition to immersion is given.

In particular it implies that there exist thin times for which immersion holds and

which are not stopping times.

Proposition 4.1. Let τ be a thin time with exhausting sequence (Tn)n≥0, partition

(Cn)n≥0 and martingale family (zn)n≥0. Then, F is immersed in Fτ if and only if

one of the following conditions hold:

(a) zn∞ = znTn for each n ≥ 1,

(b) znt = znTn∧t for each t ≥ 0 for each n ≥ 1,

(c) for each n ≥ 1, Cn is independent of F∞ conditionally w.r.t. FTn.

Proof. By Theorem 3 in [5], Lemma 2.6 (a) and monotone class theorem, F is

immersed in Fτ if and only if P(Cn ∩ {Tn ≤ t}|Ft) = P(Cn ∩ {Tn ≤ t}|F∞) for

each n ≥ 1. The last condition is precisely znt 11{Tn≤t} = zn∞11{Tn≤t} for each n ≥ 1,

which is the condition (b). Since zn are martingales, we conclude that immersion

is equivalent to znTn = zn∞ stated in the condition (a). Since znTn = zn∞ can be

rewritten as P(Cn|FTn) = P(Cn|F∞), we conclude that immersion is satisfied if

and only if, for each n ≥ 1, Cn is independent of F∞ conditionally w.r.t. FTn . �

Remark 4.2. Immersion property for a random time τ implies in particular that

τ is a pseudo-stopping time which where studied in [27] and [23]. A random

time τ is a pseudo-stopping time if for any bounded F-martingale X it holds that

E[Xτ ] = E[X0], or equivalently as established in [23], if m ≡ 1.
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Let τ be a thin time. Then, by Proposition 2.5, τ is a pseudo-stopping time if

and only if
∑∞

n=0 z
n
t∧Tn = 1 for any t ≥ 0. Clearly, immersion implies the last

condition as, by Proposition 4.1 (b) and since T0 =∞,

∞∑
n=0

znt∧Tn = z0
t +

∞∑
n=1

znt∧Tn =
∞∑
n=0

znt = 1.

Reverse implication does not hold.

5. Thin-thick decomposition of a random time

In this section we present an application of thin times to the decomposition of

a generic random time into thin and thick parts. In the first subsection we intro-

duce and present some result about thick times. Then, in the second subsection,

we establish the thin-thick decomposition. Finally, in the remaining subsections,

we apply thin-thick decomposition to obtain results on the hypothesis (H′) and

immersion.

5.1. Thick times. As described in the introduction, thick times avoid stopping

times from the reference filtration, i.e., thick times are defined in the following

way.

Definition 5.1. A random time τ is called a thick time if [[τ ]]∩ [[T ]] is evanescent

for any F-stopping time T , i.e., if it avoids all F-stopping times.

Similarly as for thin times in Theorem 2.4, thick times can be characterized in

terms of their dual optional projection.

Theorem 5.2. A random time is a thick time if and only if its dual optional

projection is a continuous process. In that case Ao = Ap.

Proof. Let T be an F-stopping time. Since E[∆AoT11{T<∞}] = P(τ = T < ∞) and

Ao is an increasing process, we deduce that

P(τ = T <∞) = 0 if and only if ∆AoT11{T<∞} = 0 P-a.s.

Since {∆Ao > 0} is an optional set, the optional section theorem [11, Theorem

4.7] implies that {∆Ao > 0} is exhausted by disjoint graphs of F-stopping times.

Thus, we conclude that τ is a thick time if and only if Ao is continuous. �

The straightforward observation that the two classes of thin and thick times

have trivial intersection is stated in the following lemma.
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Lemma 5.3. A random time τ belongs to the class of thick times and to the class

of thin times if and only if τ =∞.

5.2. Decomposition of a random time. The main concept of this section, the

thin-thick decomposition, is presented in the next definition. It is followed by the

result stating the existence of such a decomposition for any random time.

Definition 5.4. Consider a random time τ . A pair of random times (τ1, τ2) is

called a thin-thick decomposition of τ if τ1 is a thin time, τ2 is a thick time, and

τ = τ1 ∧ τ2 τ1 ∨ τ2 =∞.

Theorem 5.5. Any random time τ has a thin-thick decomposition (τ1, τ2) which

is unique on the set {τ <∞}.

Proof. Let us define τ1 and τ2 as τ1 := τ{∆Aoτ>0} and τ2 := τ{∆Aoτ=0}, where τC is

the restriction of the random time τ to the set C, defined as τC = τ11C +∞11Cc .

Properties of dual optional projection ensure that τ1 and τ2 satisfy the required

conditions. More precisely, the time τ1 is a thin time since

[[τ1]] = [[τ ]] ∩ {∆Ao > 0} = [[τ ]] ∩
⋃
n

[[Tn]] ⊂
⋃
n

[[Tn]],

where the sequence (Tn)n exhausts the jumps of the càdlàg increasing process Ao,

i.e., {∆Ao > 0} =
⋃
n[[Tn]] and the time τ2 is a thick time since, for any F-stopping

time T ,

P(τ2 = T <∞) = E
[
11{τ=T}∩{∆Aoτ=0}11(T<∞)

]
= E

[∫ ∞
0

11{u=T}∩{∆Aou=0}dA
o
u

]
= 0.

. �

For i ∈ {1, 2}, corresponding to the thin part τ1 and the thick part τ2 of a

random time τ , we define Ai := 11[[τi,∞[[. Then Ai,p and Ai,o are respectively the

F-dual predictable projection and the F-dual optional projection of Ai. Let us

denote by Zi and Z̃i the supermartingales associated with τi. Then, the following

relations hold.

Proposition 5.6. Let τ be a random time and (τ1, τ2) its thin-thick decomposition.

(a) The supermartingales Z and Z̃ can be decomposed in terms of the supermartin-

gales Z1, Z2 and Z̃1, Z̃2 as:

Z = Z1 + Z2 − 1 and Z̃ = Z̃1 + Z̃2 − 1.
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(b) The dual optional projection Ao can be decomposed as Ao = A1,o + A2,o.

(c) The dual predictable projection Ap can be decomposed as Ap = A1,p + A2,p.

Proof. The result follows from 11[[τ1,∞[[ +11[[τ2,∞[[ = 11[[τ,∞[[ which holds since τ1∨τ2 =

∞. �

Lemma 5.7. Let τ be a random time and (τ1, τ2) its thin-thick decomposition.

Let (Tn)n≥0 be an F-exhausting sequence, (Cn)n≥0 an F-partition and (zn)n≥0 an

F-martingale family of the F-thin time τ1. Then, for any t ≥ 0,

P(Cn|F τ2t ) = 11{t<τ2}
znt
Z2
t

for all n ≥ 0 ,

P(τ1 > t|F τ2t ) = 1− 11{t<τ2}
1− Z1

t

Z2
t

,

P(τ2 > t|F τ1t ) = 1− 11{t<τ1}
1− Z2

t

Z1
t

.

Proof. Let us compute P(Cn|F τ2t ) on the two sets before τ2 and after τ2 separately

as follows:

P(Cn|F τ2t ) = 11{τ2≤t}P(Cn|Ft ∨ σ(τ2)) + 11{t<τ2}
P(Cn ∩ {t < τ2}|Ft)

P(t < τ2|Ft)
.

Then, taking into account that Cn = {τ1 = Tn <∞} and τ1 ∨ τ2 =∞, one has on

the one hand

11{τ2≤t}P(Cn|Ft ∨ σ(τ2)) = P(τ1 = Tn <∞, τ2 ≤ t|Ft ∨ σ(τ2)) = 0 ,

and, on the other hand,

P(Cn ∩ {t < τ2}|Ft) = P(Cn|Ft) = znt .

Therefore, the first equality holds.

By symmetry we only prove the second identity and we skip the third one.

Similarly as before we compute P(τ1 > t|F τ2t ) on the two sets before τ2 and after

τ2 separately as follows:

P(τ1 > t|F τ2t ) = 11{τ2≤t}P(τ1 > t|Ft ∨ σ(τ2)) + 11{t<τ2}
P(τ2 > t, τ1 > t|Ft)

P(τ2 > t|Ft)
.

Then, on the one hand, taking into account that τ1 ∨ τ2 =∞,

11{τ2≤t}P(τ1 > t|Ft∨σ(τ2)) = P(τ1 > t ≥ τ2|Ft∨σ(τ2)) = P(t ≥ τ2|Ft∨σ(τ2)) = 11{τ2≤t} ,

and, on the other hand, by τ1 ∧ τ2 = τ and Proposition 5.6 (a),

P(τ1 > t, τ2 > t|Ft) = P(τ > t|Ft) = Zt = Z1
t + Z2

t − 1.
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Therefore,

P(τ1 > t|F τ2t ) = 11{τ1≤t} + 11{t<τ2}
Z1
t + Z2

t − 1

Z2
t

and the result follows. �

The following proposition we study the condition Ao = Ap. We have seen already

that, if either τ avoids F stopping times or all F-martingales are continuous, then

this condition holds.

Proposition 5.8. The condition Ao = Ap holds if and only if the random time τ

satisfies that:

(1) P(τ = T <∞) = 0 for any F-totally inaccessible stopping time T ,

(2) P(τ = S < ∞|FS) = P(τ = S < ∞|FS−) for any F-predictable stopping

time S.

Proof. By Proposition 5.6 and Theorem 5.2 it is enough to assume that τ is a

thin time. We choose the exhausting sequence (Sn)n≥1 so that it only contains

totally inaccessible or predictable stopping times. Then, by Proposition 2.5 (c)

and by the fact that Ap = (Ao)p we conclude that Ao = Ap is equivalent to

znSn11[[Sn,∞[[ =
(
znSn11[[Sn,∞[[

)p
for each n ≥ 1. If Sn is totally inaccessible then

the latter condition is equivalent to zn = 0 which is the condition (1). If Sn is

predictable then
(
znSn11[[Sn,∞[[

)p
= pznSn11[[Sn,∞[[ which boils down to the condition

(2). �

Remark 5.9. The condition (2) from Proposition 5.8 is always satisfied in quasi-

left continuous filtrations since then FS = FS− for F-predictable stopping time

S. Therefore, if F is a natural filtration of a Poisson process with jump times

(Tn)n≥1, which is quasi-left continuous, the condition Ao = Ap holds if and only

if P(τ = Tn < ∞) = 0 for any n since any F-totally inaccessible stopping time T

satisfies [[T ]] ⊂
⋃
n[[Tn]]. One can find such an example in [1, Proposition 4].

Remark 5.10. (a) Since τ1 is an Fτ -stopping time, it can be decomposed into

Fτ -accessible and Fτ -totally inaccessible parts. Thus, we can consider the decom-

position of τ into three parts as:

τ i1 = τ{∆Aoτ>0, ∆Apτ=0}, τa1 = τ{∆Aoτ>0, ∆Apτ>0} and τ2 = τ{∆Aoτ=0}.

Since τ2 is Fτ -totally inaccessible, it follows that τ i1∧τ2 is the Fτ -totally inaccessible

part and τa1 is the Fτ -accessible part of the Fτ -stopping time τ . Results of a similar

type can be found in [6] and [17, p.65]. We note that τ is an Fτ -predictable stopping
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time if and only if τ is an F-predictable stopping time.

(b) Assume that the Fτ -accessible stopping time τa1 is not an F-stopping time.

Then, the filtration Fτ is not quasi-left continuous. This provides a systemic way

to construct examples of non quasi-left continuous filtrations.

5.3. The hypothesis (H′) for a random time. We study here the hypothesis

(H′) in the progressive enlargement of filtration in connection to the thin-thick

decomposition of the random time. Let (τ1, τ2) be the thin-thick decomposition

of a random time τ . We define three enlarged filtrations Fτ1 := (F τ1t )t≥0, Fτ2 :=

(F τ2t )t≥0 and Fτ1,τ2 := (F τ1,τ2t )t≥0 as

F τit : =
⋂
s>t

Fs ∨ σ(τi ∧ s) for i = 1, 2

F τ1,τ2t : =
⋂
s>t

Fs ∨ σ(τ1 ∧ s) ∨ σ(τ2 ∧ s).

Clearly, F ⊂ Fτi ⊂ Fτ1,τ2 = (Fτ1)τ2 = (Fτ2)τ1 for i = 1, 2.

Theorem 5.11. Let τ be a random time and (τ1, τ2) its thin-thick decomposition.

Then, Fτ = Fτ1,τ2. Furthermore, the hypothesis (H′) is satisfied for (F,Fτ ) if and

only if the hypothesis (H′) is satisfied for (F,Fτ2).

Proof. In a first step, we show that, for i = 1, 2:

F ⊂ Fτi ⊂ Fτ1,τ2 = Fτ .

Let Ao be the F-dual optional projection of τ . Note that

11[[τ1,∞[[ = 11[[τ,∞[[11{∆Aoτ>0} and 11[[τ2,∞[[ = 11[[τ,∞[[11{∆Aoτ=0},

thus, since ∆Aoτ ∈ F ττ , the processes 11[[τ1,∞[[ and 11[[τ2,∞[[ are Fτ -adapted which

implies that Fτ1,τ2 ⊂ Fτ . On the other hand, we have

11[[τ1,∞[[ + 11[[τ2,∞[[ = 11[[τ,∞[[

which implies that Fτ1,τ2 ⊃ Fτ .
In a second step, note that if an F-martingale is an Fτ -semimartingale, by

Stricker’s Theorem [24, Theorem 4, Chapter II, p. 53], it is as well an Fτ2-
semimartingale. Thus the necessary condition follows. Since τ1 is an F-thin time,

it is an Fτ2-thin time and the equality Fτ1,τ2 = Fτ and Theorem 3.2 imply that the

hypothesis (H′) is satisfied for (Fτ2 ,Fτ ). Thus the sufficient condition follows. �
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In the following corollary we examine the hypothesis (H′) a minimum of a thin

time and random times satisfying the hypothesis (H′), namely honest times and

times satisfying Jacod’s absolute continuity condition (see [17, Chapter 5] and

[15, 12] respectively).

Corollary 5.12. Let τ be a thin time and σ be an honest time or satisfies Jacod’s

absolute continuity condition. Then, the hypothesis (H′) is satisfied for (F,Fτ∧σ)

Proof. First we recall that, if σ is honest then the hypothesis (H′) is satisfied

for (F,Fσ) by [17, Theorem (5,10)], and if σ satisfies Jacod’s absolute continuity

condition then (H′) is satisfied for (F,Fσ) by [15, Theorem 3.1].

Let (σ1, σ2) be a thin-thick decomposition of σ. Then, by Remark 2.3, τ ∧ σ1

is a thin time and (τ ∧ σ1, σ2) is a thin-thick decomposition of τ ∧ σ. Then the

statement of the corollary follows by applying twice Theorem 5.11. �

Proposition 5.13. Let τ be a random time and (τ1, τ2) its thin-thick decomposi-

tion. Let (Tn)n≥0 be an F-exhausting sequence, (Cn)n≥0 an F-partition and (zn)n≥0

an F-martingale family of F-thin time τ1. Assume that for an F-martingale X,

there exists an F-predictable finite variation process Γ(X) such that X = X̃+Γ(X)

where X̃ is an Fτ2-martingale. Then,

Xt = X̂t + Γ(X)t +

∫ t∧τ

0

1

Zs−
d〈X̃, m̃〉

Fτ2
s +

∞∑
n=1

11Cn

∫ t

0

11{s>Tn}
1

z̃ns−
d〈X̃, z̃n〉

Fτ2
s ,

where X̂ is an Fτ -martingale, z̃nt := P(Cn|F τ2t ) = 11{t<τ2}
znt
Z2
t

and m̃t =
∑

n z̃
n
t∧Tn .

Proof. The decomposition of X as an Fτ -semimartingale follows by Fτ = Fτ1,τ2 and

Theorem 3.2 since τ1 is an Fτ2-thin time. Lemma 5.7 and Proposition 2.5 imply

the forms of z̃n and m̃. �

5.4. Immersion for a random time. Thin-thick decomposition finds applica-

tion in studying immersion for a generic random time.

Proposition 5.14. F is immersed in Fτ if and only if F is immersed in Fτ1 and

in Fτ2. In that case, Fτ1 and Fτ2 are immersed in Fτ .

Proof. Since F ⊂ Fτi ⊂ Fτ , it is clear that, if F is immersed in Fτ , then F is

immersed in Fτ1 and in Fτ2 .
Let F be immersed in Fτ1 and in Fτ2 , i.e., Zi

t = P(τi > t|F∞) for each t ≥ 0, for

i = 1, 2. Then, by Proposition 5.6 (a),

Zt = Z1
t + Z2

t − 1 = P(τ1 > t|F∞) + P(τ2 > t|F∞)− 1 = P(τ > t|F∞)
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and we conclude that F is immersed Fτ .
It remains to prove the last assertion. Let F be immersed in Fτ . Then, using

similar arguments as in the proof of Lemma 5.7, we obtain:

P(τ2 > t|F τ1∞) = 11{τ1≤t} + 11{t<τ1}
P(τ > t|F∞)

P(τ1 > t|F∞)

and the assumed immersion yield to

P(τ2 > t|F τ1∞) = 11{τ1≤t} + 11{t<τ1}
P(τ > t|Ft)
P(τ1 > t|Ft)

= P(τ2 > t|F τ1t ) .

Therefore, Fτ1 is immersed in Fτ . The same proof is valid for τ2. �

Comments 5.15. In [18], the authors introduce a random time τ = ϑ ∧ ξ where

ξ avoids F-stopping times, and is constructed as ξ = inf{t : Λt :=
∫ t

0
λsds ≥ Θ}

where λ is a positive F-adapted process and Θ is an exponential random variable

independent from F, and ϑ is an F-accessible stopping time. Therefore, ξ is thick

and ϑ is thin. The thin-thick decomposition τ = τ1 ∧ τ2 can be obtained as follows:

τ2 = ϑ11{ϑ<ξ} +∞11{ξ≤ϑ} and τ1 = ξ11{ξ<ϑ} +∞11{ϑ≤ξ}.

The authors establish immersion property by checking P(τ > t|Ft) = P(τ > t|F∞),

a characterisation of immersion that we have recalled above. From our result,

immersion holds since F is immersed in Fξ, hence in F1, due to the property that

ϑ is an F-stopping time.

6. Link between thin times and honest times

In this section we restrict our attention to a special class of random times,

namely to honest times. We recall the definition below (see [17, p. 73]) and some

alternative characterizations in Appendix B. Honest times are well- studied class

of time fo which, in particular, the hypothesis (H′) holds.

Definition 6.1. A random time τ is an F-honest time if for every t > 0 there

exists an Ft-measurable random variable τt such that τ = τt on {τ < t}. Then, it

is always possible to choose τt such that τt ≤ t.

6.1. Fundamental properties. Let us start with some characterisation and prop-

erties of (thin) honest times.

Theorem 6.2. (a) Let (τ1, τ2) be the thin-thick decomposition of τ . Then, τ is

honest if and only if τ1 and τ2 are honest.

(b) A random time τ is a thick honest time if and only if Zτ = 1 a.s. on {τ <∞}.
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(c) Let τ be an honest time with thin-thick decomposition (τ1, τ2). Then, Zτ < 1

on {τ = τ1 <∞} and Zτ = 1 on {τ = τ2 <∞}.

Proof. (a) On the set {τ < ∞}, τ is equal to γ, the end of the optional set Γ

(Theorem B.2). Then, as {τ1 < ∞} ⊂ {τ < ∞}, on the set {τ1 < ∞}, one has

τ1 = γ, so τ1 is an honest time. Same argument for τ2.

(b) Assume that τ is a thick honest time. Then, the honest time property presented

in Theorem B.2 (c) implies that Z̃τ = 1 and the thick time property implies, by

Theorem 2.4 (b), the continuity of Ao. Therefore, the equality Z̃ = Z+ ∆Ao leads

to equality Zτ = 1 a.s. on {τ <∞}.
Assume now that Zτ = 1 on the set {τ < ∞}. Then, on {τ < ∞} we have

1 = Zτ ≤ Z̃τ ≤ 1, so Z̃τ = 1 and τ is an honest time. Furthermore, as ∆Aoτ =

Z̃τ − Zτ = 0, for each F-stopping time T we have

P(τ = T <∞) = E
[
11{τ=T}11{∆Aoτ=0}11(T<∞)

]
= E

[∫ ∞
0

11{u=T}11{∆Aou=0}dA
o
u

]
= 0.

So τ is a thick time.

(c) From the honest time property of τ and Proposition 5.6 (a), on the set {τ <∞}

1 = Z̃τ = Z̃1
τ + Z̃2

τ − 1.

On the set {τ = τ1 <∞},

Zτ = Z1
τ1

+ Z2
τ1
− 1 ≤ Z2

τ1
< 1,

where the last inequality is due to Proposition 2.5 (b). On the set {τ = τ2 <∞},
we have

1 = Z̃1
τ2

+ Z̃2
τ2
− 1 = Z̃1

τ2
,

where the second equality comes from (c) in Theorem B.2. Now let us compute

Z1
τ2

Z1
τ2

= Z̃1
τ2
−∆A1 ,o

τ2
= Z̃1

τ2
= 1,

where we have used the thick time property of τ2, i.e., {∆A1 ,o > 0} =
⋃∞
n=1[[Tn]]

(with (Tn)n≥0 being an exhausting sequence of τ1) and P(τ2 = Tn < ∞) = 0.

Finally, on {τ = τ2 <∞}

Zτ = Z1
τ2

+ Z2
τ2
− 1 = 1.

�
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Remark 6.3. We would like to remark that the condition that Zτ < 1 for an

honest time τ – which, by Theorem 6.2 (c), is equivalent to the condition that τ is

a thin honest time – is an essential assumption in [2] for the study of arbitrages

after honest times.

Lemma 6.4. Let τ be a thin honest time, τt be associated with τ as in Definition

6.1 and (Tn)n≥0 be an exhausting sequence of τ . Then:

(a) on {Tn = τt} = {Tn = τt ≤ t} we have znt = 1 − Zt, Aot = znTn and 1 −mt =

znt − znTn for each n ≥ 1;

(b) on {Tn < t} we have znt = 11{τt=Tn}(1 − Z̃t) and znt− = 11{τt=Tn}(1 − Zt−) for

each n ≥ 1; in particular

1− Z̃t =
∞∑
n=1

11{τt=Tn<t}(1− Z̃t) and 1− Zt− =
∞∑
n=1

11{τt=Tn<t}(1− Zt−).

Proof. (a) Using properties of τt we deduce that

11{Tn=τt}z
n
t = P(Tn = τt ≤ t, τ = Tn <∞|Ft)

= P(τ ≤ t, Tn = τt = τ |Ft)

= P(τ ≤ t, Tn = τt|Ft)

= 11{Tn=τt}(1− Zt)

where the first equality is due to τt ≤ t, the third one follows by τt = τ on {τ ≤ t}
and the last one is true since Tn∧ t and τt are two Ft-measurable random variables

and

{Tn = τt} = {Tn = τt < t} ∪ {Tn = τt = t}

=
{
{Tn ∧ t = τt} ∩ {τt < t}

}
∪
{
{Tn = t} ∩ {τt = t}

}
.

The dual optional projection of a thin time satisfies

11{Tn=τt}A
o
t =

∞∑
k=1

11{Tn=τt, Tk≤t}z
k
Tk

= 11{Tn=τt}z
n
Tn ,

where the second equality is due to the fact that for n 6= k we have

11{Tn=τt, Tk≤t}z
k
Tk

= 11{Tn=τt}E(11{τ=Tk≤t}|Tk)

= 11{Tn=τt=Tk}E(11{τ=Tk≤t}|Tk) = 0

since Tn and Tk have disjoint graphs and τ is an honest time. Combining the two

previous points, we conclude that 1 − mt = 1 − Zt − Aot = znt − znTn on the set
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{Tn = τt}.
(b) Again using properties of the random variable τt we derive

11{Tn<t}z
n
t = P(τ = Tn = τt < t|Ft) = 11{Tn=τt<t}(1− Z̃t),

11{Tn<t}z
n
t− = P(τ = Tn = τt < t|Ft−) = 11{Tn=τt<t}(1− Zt−).

Then, Proposition 2.5 (c) completes the proof. �

For progressive enlargement with an honest time, the hypothesis (H′) is satisfied,

and the following decomposition is given in [17, Theorem (5,10)]. Let M be an

F-local martingale. Then, there exists an Fτ -local martingale M̂ such that:

(10) Mt = M̂t +

∫ t∧τ

0

1

Zs−
d〈M,m〉s −

∫ t

0

11{s>τ}
1

1− Zs−
d〈M,m〉s.

Remark 6.5. For a thin honest time τ , the two decomposition formulas, first

given in Theorem 3.2 and second given in (10), coincide. It is enough to show that∫ t

0

11{s>τ}
1

1− Zs−
d〈X, 1−m〉s =

∞∑
n=1

11Cn

∫ t

0

11{s>Tn}
1

zns−
d〈X, zn〉s.

This is a simple consequence of the set inclusion {τ < s} ∩ {τ = Tn} ⊂ {Tn =

τs ≤ s} and Lemma 6.4 (a):∫ t

0

11{s>τ}
1

1− Zs−
d〈X, 1−m〉s =

∞∑
n=1

∫ t

0

11{s>τ}∩{τ=Tn}
1

1− Zs−
d〈X, 1−m〉s

=
∞∑
n=1

∫ t

0

11{s>τ}∩{τ=Tn}
1

zns−
d〈X, zn〉s

=
∞∑
n=1

11Cn

∫ t

0

11{s>Tn}
1

zns−
d〈X, zn〉s.

6.2. Jumping filtration. In this subsection we develop the relationship between

jumping filtration and thin honest times. Let us first recall the definition of a

jumping filtration and the main result obtained in Jacod and Skorokhod [14].

Definition 6.6. A filtration F is called a jumping filtration if there exists a lo-

calizing sequence (θn)n≥0, i.e., a sequence of stopping times increasing a.s. to ∞,

with θ0 = 0 and such that, for all n and t > 0, the σ-fields Ft and Fθn coincide up

to null sets on {θn ≤ t < θn+1}.
The sequence (θn)n is then called a jumping sequence.
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There exists an important alternative characterization of jumping filtration in

terms of martingale’s variation ([14, Theorem 1]).

Theorem 6.7. The two following conditions are equivalent:

(a) a filtration F is a jumping filtration;

(b) all martingales in the filtration F are a.s. of locally finite variation.

We investigate relationship between jumping filtration and honest times. We

show that there does not exist thick honest time in a jumping filtration and that

there exists a thick honest time in a filtration which admits a non-constant con-

tinuous martingale (in particular such a filtration is not a jumping filtration).

Theorem 6.8. The following assertions hold.

(a) If F is a jumping filtration, then all F-honest times are thin.

(b) If all F-honest times are thin, then all non-constant F-local martingales are

purely discontinuous.

Proof. (a) Let τ be an honest time. Then, take the same process α as in the

proof of Proposition B.1, i.e., α is an increasing, càdlàg, adapted process such that

αt = τ on {τ ≤ t} and τ = sup{t : αt = t}. Let us define the partition (Cn)∞n=0

such that

Cn = {θn−1 ≤ τ < θn}
for n ≥ 1 and C0 = {τ = ∞} with (θn)n≥0 being a jumping sequence for the

jumping filtration F. On each Cn with n ≥ 1 we have

τ = Tn := inf{t ≥ θn−1 : t = αθn−}.

From the jumping filtration property, we know that αθn− is Fθn−1-measurable so

each Tn is a stopping time and [[τ ]] ⊂
⋃∞
n=1[[Tn]] which shows that the honest time

τ is a thin time.

(b) The proof by contradiction is based on [25, Exercise (1.26) p.235]. Assume

that M is a non-constant continuous F-local martingale with M0 = 0. Define the

F-stopping time S1 = inf{t > 0 : 〈M〉t = 1}. Then, define the F-honest time

τ := sup {t ≤ S1 : Mt = 0} .

Since M is continuous, τ is not equal to infinity with strictly positive probability.

We now show that τ is an F-thick honest time. Let us denote Z(ω) := {t :

Mt(ω) = 0}. The set Z(ω) is closed and Zc(ω) is the union of countably many

open intervals. We call G(ω) the set of left ends of these open intervals. In what
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follows we show that for any F-stopping time T we have P(T ∈ G) = 0. Define

the F-stopping time

DT := inf{t > T : Mt = 0}

and note that

{T ∈ G} = {MT = 0} ∩ {T < DT} ∈ FT .

Assume P(T ∈ G) = p > 0. Then the process

Yt = 11{T∈G}|MT+t|11{0≤t≤DT−T}

is an (FT+t)t≥0-martingale. Indeed, for s ≤ t we have

E(Yt|FT+s) = 11{T∈G}sgn(MT+t)E(MT+t11{t≤DT−T}|FT+s)

=11{T∈G}sgn(MT+t)[
MT+s11{s≤DT−T} − E(11{s≤DT−T}11{t>DT−T}E(MT+t|FDT )|FT+s)

]
=Ys − 11{T∈G}sgn(MT+t)E(11{s≤DT−T}11{t>DT−T}MDT |FT+s)

=Ys

where we have used the martingale property of M and MDT = 0. Moreover Y0 = 0

and there exists ε > 0 such that

P(MT = 0, DT − T > ε) ≥ p

2
> 0.

Since Yε = 11{MT=0}11{DT−T≥ε}|MT+ε| ≥ 0 and P(Yε > 0) > 0, we have E(Yε) > 0 =

Y0. So, P(T ∈ G) = 0. Finally, as τ ∈ G a.s. we conclude that τ is a thick honest

time. �

Finally we give two examples of thick honest times originating from purely

discontinuous semimartingales of infinite variation. In the first Example 6.9, we

study the case of Azéma’s martingale (see [24, IV.8 p.232-237]). In the second

Example 6.10, we recall Example 2.1 from [19] on Maximum of downwards drifting

spectrally negative Lévy processes with paths of infinite variation.

Example 6.9. Let B be a Brownian motion and F its natural filtration. Define

the process

gt := sup{s ≤ t : Bs = 0}.

The process

µt := sgn(Bt)
√
t− gt
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is a martingale with respect to the filtration G := (Fgt+)t≥0 and is called the Azéma

martingale. Then, the random time

τ := sup{t ≤ 1 : µt = 0}

is clearly a G-honest time. Note that τ = τB := sup{t ≤ 1 : Bt = 0} and τB is an

F-thick honest time (see in [20, Table 1α 1), p.32] that τB has continuous F-dual

optional projection). Thus, since G ⊂ F, τ is a G-thick honest time .

Example 6.10. Let X be a Lévy process with characteristic triplet (α, σ2 = 0, ν)

satisfying ν((0,∞)) = 0, α +
∫ −1

−∞ xν(dx) < 0 and
∫ 0

−1
|x|ν(dx) = ∞. Then,

ρ = sup{t : Xt− = X∗t−} with X∗t = sups≤tXs is a thick honest time as shown in

[19, Section 2.1].

Appendix A. Definitions of projections

We collect here the definitions of the key tools we have used along the paper.

Projections and dual projections onto the reference filtration F play an important

role in the theory of enlargement of filtrations. First we recall the definition of

optional and predictable projections, see [11, Theorems 5.1 and 5.2] and [16, p.264-

265].

Definition A.1. Let X be a measurable bounded (or positive) process. The op-

tional projection of X is the unique optional process oX such that for every stopping

time T we have

E
[
XT11{T<∞}|FT

]
= oXT11{T<∞} a.s..

The predictable projection of X is the unique predictable process pX such that for

every predictable stopping time T we have

E
[
XT11{T<∞}|FT−

]
= pXT11{T<∞} a.s..

For definition of dual optional projection and dual predictable projection see [16,

p.265], [24, Chapter 3 Section 5], [8, Chapter 6 Paragraph 73 p.148], [11, Sections

5.18, 5.19]. We point out that the convention we use here allows a jump at 0,

where for a finite variation process V we assume that V0− = 0.

Definition A.2. (a) Let V be a càdlàg pre-locally integrable variation process

(not necessary adapted). The dual optional projection of V is the unique optional

process V o such that for every optional process H we have

E
[∫

[0,∞)

HsdVs

]
= E

[∫
[0,∞)

HsdV
o
s

]
.



THIN TIMES AND RANDOM TIMES’ DECOMPOSITION 26

In particular, V o
0 = E[V0|F0].

(b) Let V be a càdlàg locally integrable variation process (not necessary adapted).

The dual predictable projection of V is the unique predictable process V p such that

for every predictable process H we have

E
[∫

[0,∞)

HsdVs

]
= E

[∫
[0,∞)

HsdV
p
s

]
.

In particular, V p
0 = E[V0|F0].

Appendix B. Auxiliary results on honest times

For reader’s convenience we gather complementary results on honest times.

They can be found in [17] (see Lemma 5,1 and its proof there).

Proposition B.1. (a) A random time τ is an F-honest time if and only if for

every t > 0 there exists an Ft−-measurable random variable τt such that τ = τt on

{τ < t}.
(b) A random time τ is an F-honest time if and only if for every t > 0 there exists

an Ft-measurable random variable τt such that τ = τt on {τ ≤ t}.

Proof. Sufficiency of both conditions is straightforward.

Using the notation from Definition 6.1 we introduce the process α− as α−t =

supr∈Q,r<t τr. This definition implies that α− is an increasing, left-continuous,

adapted process such that α−t = τ on {τ < t} thus the necessary condition in (a)

is proven.

Let us denote by α the right-continuous version of α−, i.e., αt = α−t+. Then,

α is an increasing, càdlàg, adapted process such that αt = τ on {τ ≤ t} and

τ = sup{t : αt = t} thus the necessary condition in (b) is proved. �

Theorem B.2. Let τ be a random time. Then, the following conditions are equiv-

alent:

(a) τ is an honest time;

(b) there exists an optional set Γ such that τ(ω) = sup{t : (ω, t) ∈ Γ} on {τ <∞};
(c) Z̃τ = 1 a.s. on {τ <∞};
(d) τ = sup{t : Z̃t = 1} a.s. on {τ <∞}.
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