K-means Algorithm over Compressed Binary Data
Résumé
We consider a network of binary-valued sensors with a fusion center. The fusion center has to perform K-means clustering on the binary data transmitted by the sensors. In order to reduce the amount of data transmitted within the network, the sensors compress their data with a source coding scheme based on binary sparse matrices. We propose to apply the K-means algorithm directly over the compressed data without reconstructing the original sensors measurements, in order to avoid potentially complex decoding operations. We provide approximated expressions of the error probabilities of the K-means steps in the compressed domain. From these expressions, we show that applying the K-means algorithm in the compressed domain enables to recover the clusters of the original domain. Monte Carlo simulations illustrate the accuracy of the obtained approximated error probabilities, and show that the coding rate needed to perform K-means clustering in the compressed domain is lower than the rate needed to reconstruct all the measurements.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...