Sub-exponential convergence to equilibrium for Gaussian driven Stochastic Differential Equations with semi-contractive drift - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Probability Année : 2020

Sub-exponential convergence to equilibrium for Gaussian driven Stochastic Differential Equations with semi-contractive drift

Résumé

The convergence to the stationary regime is studied for Stochastic Differential Equations driven by an additive Gaussian noise and evolving in a semi-contractive environment, i.e. when the drift is only contractive out of a compact set but does not have repulsive regions. In this setting, we develop a synchronous coupling strategy to obtain sub-exponential bounds on the rate of convergence to equilibrium in Wasserstein distance. Then by a coalescent coupling close to terminal time, we derive a similar bound in total variation distance.
Fichier principal
Vignette du fichier
Rate_fSDE_revision.pdf (563.8 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01755497 , version 1 (30-03-2018)
hal-01755497 , version 2 (19-06-2019)
hal-01755497 , version 3 (02-06-2020)

Identifiants

Citer

Fabien Panloup, Alexandre Richard. Sub-exponential convergence to equilibrium for Gaussian driven Stochastic Differential Equations with semi-contractive drift. Electronic Journal of Probability, 2020, 25, ⟨10.1214/20-EJP464⟩. ⟨hal-01755497v3⟩
468 Consultations
297 Téléchargements

Altmetric

Partager

More