Quasi-isometric invariance of continuous group $L^p$-cohomology, and first applications to vanishings - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Quasi-isometric invariance of continuous group $L^p$-cohomology, and first applications to vanishings

Marc Bourdon
Bertrand Remy
  • Fonction : Auteur
  • PersonId : 1024169

Résumé

We show that the continuous L p-cohomology of locally compact second countable groups is a quasi-isometric invariant. As an application, we prove partial results supporting a positive answer to a question asked by M. Gromov, suggesting a classical behaviour of continuous L p-cohomology of simple real Lie groups. In addition to quasi-isometric invariance, the ingredients are a spectral sequence argument and Pansu's vanishing results for real hyperbolic spaces. In the best adapted cases of simple Lie groups, we obtain nearly half of the relevant vanishings.
Fichier principal
Vignette du fichier
ell_pcont_hal.pdf (732.13 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01742591 , version 1 (09-04-2018)
hal-01742591 , version 2 (15-02-2019)
hal-01742591 , version 3 (31-12-2020)

Identifiants

Citer

Marc Bourdon, Bertrand Remy. Quasi-isometric invariance of continuous group $L^p$-cohomology, and first applications to vanishings. 2020. ⟨hal-01742591v3⟩
1169 Consultations
206 Téléchargements

Altmetric

Partager

More