Fundamental Factorization of a GLSM, Part I: Construction - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Fundamental Factorization of a GLSM, Part I: Construction

Ionut Ciocan-Fontanine
  • Fonction : Auteur
David Favero
Bumsig Kim
  • Fonction : Auteur
Mark Shoemaker
  • Fonction : Auteur

Résumé

We define enumerative invariants associated to a hybrid Gauged Linear Sigma Model. We prove that in the relevant special cases, these invariants recover both the Gromov-Witten type invariants defined by Chang-Li and Fan-Jarvis-Ruan using cosection localization as well as the FJRW type invariants constructed by Polishchuk-Vaintrob. The invariants are defined by constructing a "fundamental factorization" supported on the moduli space of Landau-Ginzburg maps to a convex hybrid model. This gives the kernel of a Fourier-Mukai transform; the associated map on Hochschild homology defines our theory.

Dates et versions

hal-01737879 , version 1 (20-03-2018)

Identifiants

Citer

Ionut Ciocan-Fontanine, David Favero, Jérémy Guéré, Bumsig Kim, Mark Shoemaker. Fundamental Factorization of a GLSM, Part I: Construction. 2018. ⟨hal-01737879⟩
144 Consultations
0 Téléchargements

Altmetric

Partager

More