HYDRODYNAMIC LIMIT FOR A DISORDERED HARMONIC CHAIN - Archive ouverte HAL
Article Dans Une Revue Communications in Mathematical Physics Année : 2018

HYDRODYNAMIC LIMIT FOR A DISORDERED HARMONIC CHAIN

Résumé

We consider a one-dimensional unpinned chain of harmonic oscillators with random masses.We prove that after hyperbolic scaling of space and time the distributions of the elongation, momentum and energy converge to the solution of the Euler equations. Anderson localization decouples the mechanical modes from the thermal modes, allowing the closure of the energy conservation equation even out of thermal equilibrium. This example shows that the derivation of Euler equations rests primarily on scales separation and not on ergodicity. Furthermore it follows from our proof that the temperature profile does not evolve in any space-time scale.
Fichier principal
Vignette du fichier
DHC_27_07_2018s.pdf (246.65 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01721245 , version 1 (01-03-2018)
hal-01721245 , version 2 (30-07-2018)
hal-01721245 , version 3 (07-01-2019)

Identifiants

Citer

Cédric Bernardin, François Huveneers, Stefano Olla. HYDRODYNAMIC LIMIT FOR A DISORDERED HARMONIC CHAIN. Communications in Mathematical Physics, In press, ⟨10.1007/s00220-018-3251-4⟩. ⟨hal-01721245v2⟩
251 Consultations
146 Téléchargements

Altmetric

Partager

More