Hybridizable Discontinuous Galerkin with degree adaptivity for the incompressible Navier-Stokes equations ✩ - Archive ouverte HAL
Article Dans Une Revue Computers and Fluids Année : 2014

Hybridizable Discontinuous Galerkin with degree adaptivity for the incompressible Navier-Stokes equations ✩

Résumé

A degree adaptive Hybridizable Discontinuous Galerkin (HDG) method for the solution of the incompressible Navier-Stokes equations is presented. The key ingredient is an accurate and computationally inexpensive a posteriori error estimator based on the super-convergence properties of HDG. The error estimator drives the local modification of approximation degree in the elements and faces of the mesh, aimed at obtaining a uniform error distribution below a user-given tolerance in a given are of interest. Three 2D numerical examples are presented. High efficiency of the proposed error estimator is found, and an important reduction of the computational effort is shown with respect to non-adaptive computations, both for steady state and transient simulations.
Fichier principal
Vignette du fichier
GG_2013.pdf (1.76 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01717504 , version 1 (26-02-2018)

Identifiants

  • HAL Id : hal-01717504 , version 1

Citer

Giorgio Giorgiani, Sonia Fernández-Méndez, Antonio Huerta. Hybridizable Discontinuous Galerkin with degree adaptivity for the incompressible Navier-Stokes equations ✩. Computers and Fluids, 2014. ⟨hal-01717504⟩
72 Consultations
137 Téléchargements

Partager

More