Direct Integration of Red-NIR Emissive Ceramic-like AnM6Xi8Xa6 Metal Cluster Salts in Organic Copolymers Using Supramolecular Interactions
Abstract
Hybrid nanomaterials made of inorganic nanocomponents dispersed in an organic host raise an increasing interest as low-cost solution-processable functional materials. However, preventing phase segregation while allowing a high inorganic doping content remains a major challenge, and usual methods require a functionalization step prior integration. Herein, we report a new approach to design such nanocomposite in which lead-free and cadmium-free ceramic-like metallic nanocluster compounds are embedded at 10 wt % in organic copolymers, without any functionalization. Homogeneity and physical stability are ensured by weak interactions occurring between the copolymer lateral chains and the nanocluster compound. Photophysical studies show that the intrinsic properties of the native cluster (absolute quantum yield of around 0.5, phosphorescence lifetime) are fully retained in the nanocomposite. Hybrids could be ink-jet printed and casted on a blue LED. The proof-of-concept device emits in the Red-NIR area and generates singlet oxygen, of particular interest for lightings, display, sensors or photodynamic based therapy applications.
Domains
Physics [physics] Condensed Matter [cond-mat] Materials Science [cond-mat.mtrl-sci] Physics [physics] Physics [physics] Optics [physics.optics] Physics [physics] Quantum Physics [quant-ph] Engineering Sciences [physics] Micro and nanotechnologies/Microelectronics Engineering Sciences [physics] Optics / Photonic
Fichier principal
Molard et al_Direct Integration of Red-NIR Emissive Ceramic-like AnM6Xi8Xa6 Metal Cluster.pdf (1.13 Mo)
Télécharger le fichier
Origin : Files produced by the author(s)
Loading...