Affine smooth group schemes over the dual numbers - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Affine smooth group schemes over the dual numbers

Résumé

We provide an equivalence between the category of affine, smooth group schemes over the ring of generalized dual numbers $k[I]$, and the category of extensions of the form 1 → Lie(G, I) → E → G → 1 where G is an affine, smooth group scheme over k. Here k is an arbitrary commutative ring and $k[I] = k ⊕ I$ with $I^2 = 0$. The equivalence is given by Weil restriction, and we provide a quasi-inverse which we call Weil extension. It is compatible with the exact structures and the $O_k$-module stack structures on both categories. Our constructions rely on the use of the group algebra scheme of an affine group scheme; we introduce this object and establish its main properties. As an application, we establish a Dieudonné classification for smooth, commutative, unipotent group schemes over $k[I]$.
Fichier principal
Vignette du fichier
Romagny_Tossici_Affine_smooth_group_schemes_over_the_dual_numbers.pdf (524.45 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01712886 , version 1 (19-02-2018)
hal-01712886 , version 2 (23-02-2018)
hal-01712886 , version 3 (28-12-2018)
hal-01712886 , version 4 (25-06-2019)

Identifiants

Citer

Matthieu Romagny, Dajano Tossici. Affine smooth group schemes over the dual numbers. 2018. ⟨hal-01712886v1⟩
563 Consultations
969 Téléchargements

Altmetric

Partager

More