Bootstrapping Samples of Accidentals in Dense Piano Scores for CNN-Based Detection - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Bootstrapping Samples of Accidentals in Dense Piano Scores for CNN-Based Detection

Résumé

State-of-the-art Optical Music Recognition system often fails to process dense and damaged music scores, where many symbols can present complex segmentation problems. We propose to resolve these segmentation problems by using a CNN-based detector trained with few manually annotated data. A data augmentation bootstrapping method is used to accurately train a deep learning model to do the localization and classification of an accidental symbol associated with a note head, or the note head if there is no accidental. Using 5-fold cross-validation, we obtain an average of 98.5% localization with an IoU score over 0.5 and a classification accuracy of 99.2%.
Fichier principal
Vignette du fichier
GREC_2017_camera_ready.pdf (92.76 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01712213 , version 1 (19-02-2018)

Identifiants

Citer

Kwon-Young Choi, Bertrand Coüasnon, Yann Ricquebourg, Richard Zanibbi. Bootstrapping Samples of Accidentals in Dense Piano Scores for CNN-Based Detection. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Nov 2017, Kyoto, Japan. ⟨10.1109/ICDAR.2017.257⟩. ⟨hal-01712213⟩
268 Consultations
212 Téléchargements

Altmetric

Partager

More