Learning Delayed Influences of Biological Systems - Archive ouverte HAL
Article Dans Une Revue Frontiers in Bioengineering and Biotechnology Année : 2015

Learning Delayed Influences of Biological Systems

Résumé

Boolean networks are widely used model to represent gene interactions and global dynam-ical behavior of gene regulatory networks. To understand the memory effect involved in some interactions between biological components, it is necessary to include delayed influences in the model. In this paper, we present a logical method to learn such models from sequences of gene expression data. This method analyzes each sequence one by one to iteratively construct a Boolean network that captures the dynamics of these observations. To illustrate the merits of this approach, we apply it to learning real data from bioinformatic literature. Using data from the yeast cell cycle, we give experimental results and show the scalability of the method. We show empirically that using this method we can handle millions of observations and successfully capture delayed influences of Boolean networks.
Fichier principal
Vignette du fichier
fbioe-02-00081.pdf (606.29 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01710485 , version 1 (16-02-2018)

Identifiants

Citer

Tony Ribeiro, Morgan Magnin, Katsumi Inoue, Chiaki Sakama. Learning Delayed Influences of Biological Systems. Frontiers in Bioengineering and Biotechnology, 2015, 2, ⟨10.3389/fbioe.2014.00081⟩. ⟨hal-01710485⟩
87 Consultations
63 Téléchargements

Altmetric

Partager

More