WEAKLY LOCALIZED STATES FOR NONLINEAR DIRAC EQUATIONS
Résumé
We prove the existence of infinitely many non square-integrable stationary solutions for a family of massless Dirac equations in 2D. They appear as effective equations in two dimensional honeycomb structures. We give a direct existence proof thanks to a particular radial ansatz, which also allows to provide the exact asymptotic behavior of spinor components. Moreover, those solutions admit a variational characterization. We also indicate how the content of the present paper allows to extend our previous results for the massive case [5] to more general nonlinearities.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...