SINGULAR SEMIPOSITIVE METRICS ON LINE BUNDLES ON VARIETIES OVER TRIVIALLY VALUED FIELDS - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

SINGULAR SEMIPOSITIVE METRICS ON LINE BUNDLES ON VARIETIES OVER TRIVIALLY VALUED FIELDS

Résumé

Let X be a smooth projective Berkovich space over a trivially or discretely valued field k of residue characteristic zero, and let L be an ample line bundle on X. We develop a theory of plurisubharmonic (or semipositive) metrics on L. In particular we show that the (non-Archimedean) Monge-Ampère operator induces a bijection between plurisubharmonic metrics and Radon probability measures of finite energy. In the discretely valued case, these results refine earlier work obtained in collaboration with C. Favre. In the trivially valued case, the results are new and will in subsequent work be shown to have ramifications for the study of K-stability.
Fichier principal
Vignette du fichier
BJ_trivval.pdf (1019.86 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01708676 , version 1 (13-02-2018)

Identifiants

  • HAL Id : hal-01708676 , version 1

Citer

Sébastien Boucksom, Mattias Jonsson. SINGULAR SEMIPOSITIVE METRICS ON LINE BUNDLES ON VARIETIES OVER TRIVIALLY VALUED FIELDS. 2018. ⟨hal-01708676⟩
438 Consultations
205 Téléchargements

Partager

More