Poisson processes and a log-concave Bernstein theorem - Archive ouverte HAL
Article Dans Une Revue Studia Mathematica Année : 2019

Poisson processes and a log-concave Bernstein theorem

Résumé

We discuss interplays between log-concave functions and log-concave sequences. We prove a Bernstein-type theorem, which characterizes the Laplace transform of log-concave measures on the half-line in terms of log-concavity of the alternating Taylor coefficients. We establish concavity inequalities for sequences inspired by the Pr\'ekopa-Leindler and the Walkup theorems. One of our main tools is a stochastic variational formula for the Poisson average.
Fichier principal
Vignette du fichier
log_concave_bernstein_Arxiv.pdf (244.26 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01708514 , version 1 (13-02-2018)

Identifiants

Citer

Boaz Klartag, Joseph Lehec. Poisson processes and a log-concave Bernstein theorem. Studia Mathematica, 2019, 1 (247), pp.85-107. ⟨10.4064/sm180212-30-7⟩. ⟨hal-01708514⟩
127 Consultations
288 Téléchargements

Altmetric

Partager

More