Uniqueness of the solution to the 2D Vlasov-Navier-Stokes system - Archive ouverte HAL
Article Dans Une Revue Revista Matemática Iberoamericana Année : 2020

Uniqueness of the solution to the 2D Vlasov-Navier-Stokes system

Daniel Han-Kwan
Evelyne Miot
Ayman Moussa
Iván Moyano

Résumé

We prove a uniqueness result for weak solutions to the Vlasov-Navier-Stokes system in two dimensions, both in the whole space and in the periodic case, under a mild decay condition on the initial distribution function. The main result is achieved by combining methods from optimal transportation (introduced in this context by G. Loeper) with the use of Hardy's maximal function, in order to obtain some fine Wassestein-like estimates for the difference of two solutions of the Vlasov equation.

Dates et versions

hal-01708231 , version 1 (13-02-2018)

Identifiants

Citer

Daniel Han-Kwan, Evelyne Miot, Ayman Moussa, Iván Moyano. Uniqueness of the solution to the 2D Vlasov-Navier-Stokes system. Revista Matemática Iberoamericana, 2020, 1 (36), pp.37-60. ⟨10.4171/RMI/1120⟩. ⟨hal-01708231⟩
218 Consultations
0 Téléchargements

Altmetric

Partager

More