Sur les paquets d'Arthur aux places r\'eelles, translation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Sur les paquets d'Arthur aux places r\'eelles, translation

David Renard
  • Fonction : Auteur
  • PersonId : 1028143
Colette Moeglin
  • Fonction : Auteur
  • PersonId : 828557

Résumé

This article is part of a project which aims to describe as explicitly as possible the Arthur packets of classical real groups and to prove a multiplicity one result for them. Let $G$ be a symplectic or special orthogonal real group, and $\psi: W_{\mathbb R}\times \mathbf{SL}_2(\mathbb C)\rightarrow {}^LG$ be an Arthur parameter for $G$. Let $A(\psi)$ the component group of the centralizer of $\psi$ in $\hat G$. Attached to $\psi$ is a finite length unitary representation $\pi^A(\psi)$ of $G\times A(\psi)$, which is characterized by the endoscopic identities (ordinary and twisted) it satisfies. In [arXiv:1703.07226] we gave a description of the irreducible components of $\pi^A(\psi)$ when the parameter $\psi$ is "very regular, with good parity". In the present paper, we use translation of infinitesimal character to describe $\pi^A(\psi)$ in the general good parity case from the representation $\pi^A(\psi_+)$ attached to a very regular, with good parity, parameter $\psi_+$ obtained from $\psi$ by a simple shift.

Dates et versions

hal-01707566 , version 1 (12-02-2018)

Identifiants

Citer

David Renard, Colette Moeglin. Sur les paquets d'Arthur aux places r\'eelles, translation. 2018. ⟨hal-01707566⟩
119 Consultations
0 Téléchargements

Altmetric

Partager

More