MONK – Outlier-Robust Mean Embedding Estimation by Median-of-Means - Archive ouverte HAL
Rapport (Rapport De Recherche) Année : 2018

MONK – Outlier-Robust Mean Embedding Estimation by Median-of-Means

Résumé

Mean embeddings provide an extremely flexible and powerful tool in machine learning and statistics to represent probability distributions and define a semi-metric (MMD, maximum mean discrepancy ; also called N-distance or energy distance), with numerous successful applications. The representation is constructed as the expectation of the feature map defined by a kernel. As a mean, its classical empirical estimator, however, can be arbitrary severely affected even by a single outlier in case of unbounded features. To the best of our knowledge, unfortunately even the consistency of the existing few techniques trying to alleviate this serious sensitivity bottleneck is unknown. In this paper, we show how the recently emerged principle of median-of-means can be used to design minimax-optimal estimators for kernel mean embedding and MMD, with finite-sample strong outlier-robustness guarantees.
Fichier principal
Vignette du fichier
MONK.pdf (354.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01705881 , version 1 (09-02-2018)
hal-01705881 , version 2 (13-02-2018)
hal-01705881 , version 3 (15-02-2018)
hal-01705881 , version 4 (17-10-2018)
hal-01705881 , version 5 (15-05-2019)

Identifiants

  • HAL Id : hal-01705881 , version 1

Citer

Matthieu Lerasle, Zoltán Szabó, Gaspar Massiot, Eric Moulines. MONK – Outlier-Robust Mean Embedding Estimation by Median-of-Means. [Research Report] Laboratoire de Mathématiques d'Orsay; Ecole Polytechnique (Palaiseau, France); ONERA. 2018. ⟨hal-01705881v1⟩
874 Consultations
697 Téléchargements

Partager

More