Scaling limits of population and evolution processes in random environment - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Probability Année : 2019

Scaling limits of population and evolution processes in random environment

Résumé

Our motivation comes from the large population approximation of individual based models in population dynamics and population genetics. We propose a general method to investigate scaling limits of finite dimensional population size Markov chains to diffusion with jumps. The statements of tightness, identification and convergence in law are based on the convergence of suitable characteristics of the transition of the chain and strongly exploit the structure of the population processes defined recursively as sums of independent random variables. These results allow to reduce the convergence of characteristics of semimartingales to analytically tractable functional spaces. We develop two main applications. First, we extend the classical Wright-Fisher diffusion approximation to independent and identically distributed random environment. Second, we obtain the convergence in law of generalized Galton-Watson processes with interactions and random environment to the solution of stochastic differential equations with jumps.
Fichier principal
Vignette du fichier
SLGP-15VBMEC.pdf (575.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01702458 , version 1 (06-02-2018)
hal-01702458 , version 2 (04-11-2018)

Identifiants

Citer

Vincent Bansaye, Maria-Emilia Caballero, Sylvie Méléard. Scaling limits of population and evolution processes in random environment. Electronic Journal of Probability, 2019, 95 (5), pp.749-784. ⟨10.1214/19-EJP262⟩. ⟨hal-01702458v2⟩
145 Consultations
156 Téléchargements

Altmetric

Partager

More