Blow-up profile of rotating 2D focusing Bose gases - Archive ouverte HAL
Chapitre D'ouvrage Année : 2018

Blow-up profile of rotating 2D focusing Bose gases

Résumé

We consider the Gross-Pitaevskii equation describing an attractive Bose gas trapped to a quasi 2D layer by means of a purely harmonic potential, and which rotates at a fixed speed of rotation $\Omega$. First we study the behavior of the ground state when the coupling constant approaches $a_*$ , the critical strength of the cubic nonlinearity for the focusing nonlinear Schrödinger equation. We prove that blow-up always happens at the center of the trap, with the blow-up profile given by the Gagliardo-Nirenberg solution. In particular, the blow-up scenario is independent of $\Omega$, to leading order. This generalizes results obtained by Guo and Seiringer (Lett. Math. Phys., 2014, vol. 104, p. 141–156) in the non-rotating case. In a second part we consider the many-particle Hamiltonian for $N$ bosons, interacting with a potential rescaled in the mean-field manner $−a_N N^{2\beta−1} w(N^{\beta} x), with $w$ a positive function such that $\int_{\mathbb{R}^2} w(x) dx = 1$. Assuming that $\beta < 1/2$ and that $a_N \to a_*$ sufficiently slowly, we prove that the many-body system is fully condensed on the Gross-Pitaevskii ground state in the limit $N \to \infty$.
Fichier principal
Vignette du fichier
Blowup-NLS-rev2.pdf (298.21 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01700668 , version 1 (05-02-2018)
hal-01700668 , version 2 (08-04-2018)

Identifiants

Citer

Mathieu Lewin, Phan Thành Nam, Nicolas Rougerie. Blow-up profile of rotating 2D focusing Bose gases. Daniela Cadamuro, Maximilian Duell, Wojciech Dybalski and Sergio Simonella. Macroscopic Limits of Quantum Systems, 270, Springer International Publishing, pp.145-170, 2018, Springer Proceedings in Mathematics & Statistics, ⟨10.1007/978-3-030-01602-9_7⟩. ⟨hal-01700668v2⟩
376 Consultations
143 Téléchargements

Altmetric

Partager

More