A Lagrange multiplier method for a discrete fracture model for flow in porous media - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

A Lagrange multiplier method for a discrete fracture model for flow in porous media

Résumé

In this work we present a novel discrete fracture model for single-phase Darcy flow in porous media with fractures of co-dimension one, which introduces an additional unknown at the fracture interface. Inspired by the fictitious domain method this Lagrange multiplier couples fracture and matrix domain and represents a local exchange of the fluid. The multipliers naturally impose the equality of the pressures at the fracture interface. The model is thus appropriate for domains with fractures of permeability higher than that in the surrounding bulk domain. In particular the novel approach allows for independent, regular meshing of fracture and matrix domain and therefore avoids the generation of small elements. We show existence and uniqueness of the weak solution of the continuous primal formulation. Moreover we discuss the discrete inf-sup condition of two different finite element formulations. Several numerical examples verify the accuracy and convergence of proposed method.
Fichier principal
Vignette du fichier
articleHAL.pdf (776.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01700663 , version 2 (13-02-2018)
hal-01700663 , version 3 (03-01-2019)

Identifiants

  • HAL Id : hal-01700663 , version 2

Citer

Markus Köppel, Vincent Martin, Jérôme Jaffré, Jean E. Roberts. A Lagrange multiplier method for a discrete fracture model for flow in porous media. 2018. ⟨hal-01700663v2⟩
654 Consultations
589 Téléchargements

Partager

More